@article{ErdalBaroniSanchezLeonetal.2019, author = {Erdal, Daniel and Baroni, Gabriele and S{\´a}nchez Le{\´o}n, Eduardo Emilio and Cirpka, Olaf A.}, title = {The value of simplified models for spin up of complex models with an application to subsurface hydrology}, series = {Computers \& geosciences : an international journal devoted to the publication of papers on all aspects of geocomputation and to the distribution of computer programs and test data sets ; an official journal of the International Association for Mathematical Geology}, volume = {126}, journal = {Computers \& geosciences : an international journal devoted to the publication of papers on all aspects of geocomputation and to the distribution of computer programs and test data sets ; an official journal of the International Association for Mathematical Geology}, publisher = {Elsevier}, address = {Oxford}, issn = {0098-3004}, doi = {10.1016/j.cageo.2019.01.014}, pages = {62 -- 72}, year = {2019}, abstract = {Spinning up large-scale coupled surface-subsurface numerical models can be a time and resource consuming task. If an uninformed initial condition is chosen, the spin-up can easily require 20 years of repeated simulations on high-performance computing machines. In this paper we compare the classical approach of starting from a fixed shallow depth to groundwater (here 3 m) with three more informed approaches for the definition of initial conditions in the spin up. In the first of these three approaches, we start from a known-steady state groundwater table, calculated with a 2-D groundwater model and the yearly net recharge, and combine it with an unsaturated zone that assumes hydrostatic conditions. In the second approach, we start from the same groundwater table combined with vertical profiles in the unsaturated zone with uniform vertical flow identical to the groundwater recharge. In the third approach we calculate a dynamic steady state from a simplified subsurface model combining a transient 2-D groundwater model with a limited number of 1-D transient unsaturated zone columns on top. Results for spinning-up a 3-D Parflow-CLM model using the different initial conditions show that large gains can be made by considering states in groundwater and the vadose zone that are consistent, i.e. where groundwater recharge and the vertical flux in the vadose zone agree. By this, the spin-up time was reduced from about 10 years to about 3 years of simulated time. In the light of seasonal fluctuations of net recharge, using the transient approach showed more stable results.}, language = {en} } @article{BarendrechtViglioneKreibichetal.2019, author = {Barendrecht, Marlies H. and Viglione, Alberto and Kreibich, Heidi and Merz, Bruno and Vorogushyn, Sergiy and Bl{\"o}schl, G.}, title = {The Value of Empirical Data for Estimating the Parameters of a Sociohydrological Flood Risk Model}, series = {Water resources research}, volume = {55}, journal = {Water resources research}, number = {2}, publisher = {American Geophysical Union}, address = {Washington}, issn = {0043-1397}, doi = {10.1029/2018WR024128}, pages = {1312 -- 1336}, year = {2019}, abstract = {In this paper, empirical data are used to estimate the parameters of a sociohydrological flood risk model. The proposed model, which describes the interactions between floods, settlement density, awareness, preparedness, and flood loss, is based on the literature. Data for the case study of Dresden, Germany, over a period of 200years, are used to estimate the model parameters through Bayesian inference. The credibility bounds of their estimates are small, even though the data are rather uncertain. A sensitivity analysis is performed to examine the value of the different data sources in estimating the model parameters. In general, the estimated parameters are less biased when using data at the end of the modeled period. Data about flood awareness are the most important to correctly estimate the parameters of this model and to correctly model the system dynamics. Using more data for other variables cannot compensate for the absence of awareness data. More generally, the absence of data mostly affects the estimation of the parameters that are directly related to the variable for which data are missing. This paper demonstrates that combining sociohydrological modeling and empirical data gives additional insights into the sociohydrological system, such as quantifying the forgetfulness of the society, which would otherwise not be easily achieved by sociohydrological models without data or by standard statistical analysis of empirical data.}, language = {en} } @article{FaireyTimmermanSudoetal.2019, author = {Fairey, Brenton J. and Timmerman, Martin Jan and Sudo, Masafumi and Tsikos, Harilaos}, title = {The role of hydrothermal activity in the formation of Karst-hosted manganese deposits of the Postmasburg Mn Field, Northern Cape Province, South Africa}, series = {Minerals}, volume = {9}, journal = {Minerals}, number = {7}, publisher = {MDPI}, address = {Basel}, issn = {2075-163X}, doi = {10.3390/min9070408}, pages = {28}, year = {2019}, abstract = {The Postmasburg Manganese Field (PMF), Northern Cape Province, South Africa, once represented one of the largest sources of manganese ore worldwide. Two belts of manganese ore deposits have been distinguished in the PMF, namely the Western Belt of ferruginous manganese ores and the Eastern Belt of siliceous manganese ores. Prevailing models of ore formation in these two belts invoke karstification of manganese-rich dolomites and residual accumulation of manganese wad which later underwent diagenetic and low-grade metamorphic processes. For the most part, the role of hydrothermal processes and metasomatic alteration towards ore formation has not been adequately discussed. Here we report an abundance of common and some rare Al-, Na-, K- and Ba-bearing minerals, particularly aegirine, albite, microcline, banalsite, serandite-pectolite, paragonite and natrolite in Mn ores of the PMF, indicative of hydrothermal influence. Enrichments in Na, K and/or Ba in the ores are generally on a percentage level for most samples analysed through bulk-rock techniques. The presence of As-rich tokyoite also suggests the presence of As and V in the hydrothermal fluid. The fluid was likely oxidized and alkaline in nature, akin to a mature basinal brine. Various replacement textures, particularly of Na- and K- rich minerals by Ba-bearing phases, suggest sequential deposition of gangue as well as ore-minerals from the hydrothermal fluid, with Ba phases being deposited at a later stage. The stratigraphic variability of the studied ores and their deviation from the strict classification of ferruginous and siliceous ores in the literature, suggests that a re-evaluation of genetic models is warranted. New Ar-Ar ages for K-feldspars suggest a late Neoproterozoic timing for hydrothermal activity. This corroborates previous geochronological evidence for regional hydrothermal activity that affected Mn ores at the PMF but also, possibly, the high-grade Mn ores of the Kalahari Manganese Field to the north. A revised, all-encompassing model for the development of the manganese deposits of the PMF is then proposed, whereby the source of metals is attributed to underlying carbonate rocks beyond the Reivilo Formation of the Campbellrand Subgroup. The main process by which metals are primarily accumulated is attributed to karstification of the dolomitic substrate. The overlying Asbestos Hills Subgroup banded iron formation (BIF) is suggested as a potential source of alkali metals, which also provides a mechanism for leaching of these BIFs to form high-grade residual iron ore deposits.}, language = {en} } @article{BielcikAguilarTriguerosLakovicetal.2019, author = {Bielcik, Milos and Aguilar-Trigueros, Carlos A. and Lakovic, Milica and Jeltsch, Florian and Rillig, Matthias C.}, title = {The role of active movement in fungal ecology and community assembly}, series = {Movement Ecology}, volume = {7}, journal = {Movement Ecology}, number = {1}, publisher = {BMC}, address = {London}, issn = {2051-3933}, doi = {10.1186/s40462-019-0180-6}, pages = {12}, year = {2019}, abstract = {Movement ecology aims to provide common terminology and an integrative framework of movement research across all groups of organisms. Yet such work has focused on unitary organisms so far, and thus the important group of filamentous fungi has not been considered in this context. With the exception of spore dispersal, movement in filamentous fungi has not been integrated into the movement ecology field. At the same time, the field of fungal ecology has been advancing research on topics like informed growth, mycelial translocations, or fungal highways using its own terminology and frameworks, overlooking the theoretical developments within movement ecology. We provide a conceptual and terminological framework for interdisciplinary collaboration between these two disciplines, and show how both can benefit from closer links: We show how placing the knowledge from fungal biology and ecology into the framework of movement ecology can inspire both theoretical and empirical developments, eventually leading towards a better understanding of fungal ecology and community assembly. Conversely, by a greater focus on movement specificities of filamentous fungi, movement ecology stands to benefit from the challenge to evolve its concepts and terminology towards even greater universality. We show how our concept can be applied for other modular organisms (such as clonal plants and slime molds), and how this can lead towards comparative studies with the relationship between organismal movement and ecosystems in the focus.}, language = {en} } @article{TanskiBergstedtBevingtonetal.2019, author = {Tanski, George and Bergstedt, Helena and Bevington, Alexandre and Bonnaventure, Philip and Bouchard, Frederic and Coch, Caroline and Dumais, Simon and Evgrafova, Alevtina and Frauenfeld, Oliver W. and Frederick, Jennifer and Fritz, Michael and Frolov, Denis and Harder, Silvie and Hartmeyer, Ingo and Heslop, Joanne and Hoegstroem, Elin and Johansson, Margareta and Kraev, Gleb and Kuznetsova, Elena and Lenz, Josefine and Lupachev, Alexey and Magnin, Florence and Martens, Jannik and Maslakov, Alexey and Morgenstern, Anne and Nieuwendam, Alexandre and Oliva, Marc and Radosavljevi, Boris and Ramage, Justine Lucille and Schneider, Andrea and Stanilovskaya, Julia and Strauss, Jens and Trochim, Erin and Vecellio, Daniel J. and Weber, Samuel and Lantuit, Hugues}, title = {The Permafrost Young Researchers Network (PYRN) is getting older}, series = {Polar record}, volume = {55}, journal = {Polar record}, number = {4}, publisher = {Cambridge Univ. Press}, address = {New York}, issn = {0032-2474}, doi = {10.1017/S0032247418000645}, pages = {216 -- 219}, year = {2019}, abstract = {A lasting legacy of the International Polar Year (IPY) 2007-2008 was the promotion of the Permafrost Young Researchers Network (PYRN), initially an IPY outreach and education activity by the International Permafrost Association (IPA). With the momentum of IPY, PYRN developed into a thriving network that still connects young permafrost scientists, engineers, and researchers from other disciplines. This research note summarises (1) PYRN's development since 2005 and the IPY's role, (2) the first 2015 PYRN census and survey results, and (3) PYRN's future plans to improve international and interdisciplinary exchange between young researchers. The review concludes that PYRN is an established network within the polar research community that has continually developed since 2005. PYRN's successful activities were largely fostered by IPY. With >200 of the 1200 registered members active and engaged, PYRN is capitalising on the availability of social media tools and rising to meet environmental challenges while maintaining its role as a successful network honouring the legacy of IPY.}, language = {en} } @phdthesis{Thonicke2019, author = {Thonicke, Kirsten}, title = {The influence of disturbance, climate extremes and land-use change on vegetation dynamics}, school = {Universit{\"a}t Potsdam}, year = {2019}, language = {en} } @misc{LopezTarazonBronstertThiekenetal.2019, author = {Lopez Tarazon, Jos{\´e} Andr{\´e}s and Bronstert, Axel and Thieken, Annegret and Petrow, Theresia}, title = {The effects of global change on floods, fluvial geomorphology and related hazards in mountainous rivers}, series = {The science of the total environment : an international journal for scientific research into the environment and its relationship with man}, volume = {669}, journal = {The science of the total environment : an international journal for scientific research into the environment and its relationship with man}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0048-9697}, doi = {10.1016/j.scitotenv.2019.03.026}, pages = {7 -- 10}, year = {2019}, language = {en} } @misc{OPUS4-48290, title = {Hydrology Day 2020: March 31 to April 1, 2020 in Potsdam : "Hydrology: Linking the Environmental Phases and -Disciplines"}, series = {Hydrologie und Wasserbewirtschaftung}, volume = {63}, journal = {Hydrologie und Wasserbewirtschaftung}, number = {6}, publisher = {Bundesanstalt f{\"u}r Gew{\"a}sserkunde}, address = {Koblenz}, issn = {1439-1783}, pages = {356 -- 356}, year = {2019}, language = {de} } @article{FosterHeindelRichozetal.2019, author = {Foster, William J. and Heindel, Katrin and Richoz, Sylvain and Gliwa, Jana and Lehrmann, Daniel J. and Baud, Aymon and Kolar-Jurkovsek, Tea and Aljinovic, Dunja and Jurkovsek, Bogdan and Korn, Dieter and Martindale, Rowan C. and Peckmann, J{\"o}rn}, title = {Suppressed competitive exclusion enabled the proliferation of Permian/Triassic boundary microbialites}, series = {The Depositional Record : the open access journal of the International Association of Sedimentologists}, volume = {6}, journal = {The Depositional Record : the open access journal of the International Association of Sedimentologists}, number = {1}, publisher = {Wiley}, address = {Hoboken}, issn = {2055-4877}, doi = {10.1002/dep2.97}, pages = {62 -- 74}, year = {2019}, abstract = {During the earliest Triassic microbial mats flourished in the photic zones of marginal seas, generating widespread microbialites. It has been suggested that anoxic conditions in shallow marine environments, linked to the end-Permian mass extinction, limited mat-inhibiting metazoans allowing for this microbialite expansion. The presence of a diverse suite of proxies indicating oxygenated shallow sea-water conditions (metazoan fossils, biomarkers and redox proxies) from microbialite successions have, however, challenged the inference of anoxic conditions. Here, the distribution and faunal composition of Griesbachian microbialites from China, Iran, Turkey, Armenia, Slovenia and Hungary are investigated to determine the factors that allowed microbialite-forming microbial mats to flourish following the end-Permian crisis. The results presented here show that Neotethyan microbial buildups record a unique faunal association due to the presence of keratose sponges, while the Palaeotethyan buildups have a higher proportion of molluscs and the foraminifera Earlandia. The distribution of the faunal components within the microbial fabrics suggests that, except for the keratose sponges and some microconchids, most of the metazoans were transported into the microbial framework via wave currents. The presence of both microbialites and metazoan associations were limited to oxygenated settings, suggesting that a factor other than anoxia resulted in a relaxation of ecological constraints following the mass extinction event. It is inferred that the end-Permian mass extinction event decreased the diversity and abundance of metazoans to the point of significantly reducing competition, allowing photosynthesis-based microbial mats to flourish in shallow water settings and resulting in the formation of widespread microbialites.}, language = {en} } @misc{KalkuhlSteckelMontroneetal.2019, author = {Kalkuhl, Matthias and Steckel, Jan Christoph and Montrone, Lorenzo and Jakob, Michael and Peters, J{\"o}rg and Edenhofer, Ottmar}, title = {Successful coal phase-out requires new models of development}, series = {Nature Energy}, volume = {4}, journal = {Nature Energy}, number = {11}, publisher = {Nature Publ. Group}, address = {London}, issn = {2058-7546}, doi = {10.1038/s41560-019-0500-5}, pages = {897 -- 900}, year = {2019}, abstract = {Different energy sources have different spillovers on economic development and industrialization. Pathways of economic development based on renewable energy sources might require additional policies to support industrial development.}, language = {en} } @article{FohlmeisterLechleitner2019, author = {Fohlmeister, Jens Bernd and Lechleitner, Franziska A.}, title = {STAlagmite dating by radiocarbon (star)}, series = {Quaternary geochronology : the international research and review journal on advances in quaternary dating techniques}, volume = {51}, journal = {Quaternary geochronology : the international research and review journal on advances in quaternary dating techniques}, publisher = {Elsevier}, address = {Oxford}, issn = {1871-1014}, doi = {10.1016/j.quageo.2019.02.008}, pages = {120 -- 129}, year = {2019}, abstract = {Speleothems, secondary cave carbonates, are important tools for climate reconstruction, especially as they often can be very precisely dated with the UTh method. If the U-Th method fails, dating becomes difficult, and often results in abandonment of samples and study sites. Radiocarbon dating is the only other radiometric dating technique applicable to the last similar to 50 ka, but presents complexities related to temporal variability of the reservoir effect in speleothems. Thus, radiocarbon dating of speleothems is not straightforward, and there are currently no publicly available tools to define proper age-depth relationships with this method. Here, we present an improved version of a previously published radiocarbon based age-depth modelling approach (star, Lechleitner et al., 2016b), which is now made freely available. The software is easy to use and provides the possibility to obtain reliable age-depth relationships, without prior knowledge of reservoir effects and their variability. In addition, star is able to detect and handle growth stops and phases with different growth rates. We test star on artificially constructed data sets and illustrate steps to improve the model performance. Furthermore, we apply the new approach to published radiocarbon data of U-Th dated stalagmites. This offers the possibility to investigate the strengths and weaknesses of the new approach with respect to potentially significant long term trends in the radiocarbon reservoir effect, which might otherwise remain undetected. In summary, we have produced a valuable software, which easily enables to construct age-depth relationships on the basis of reservoir effect disturbed radiocarbon measurements.}, language = {en} } @article{BarbosadeLiraRabeloCoelhoetal.2019, author = {Barbosa, Luis Romero and de Lira, Nicholas Borges and Rabelo Coelho, Victor Hugo and Bernard Passerat de Silans, Alain Marie and Gadelha, Andre Nobrega and Almeida, Cristiano das Neves}, title = {Stability of Soil Moisture Patterns Retrieved at Different Temporal Resolutions in a Tropical Watershed}, series = {Revista brasileira de ciencias do solo}, volume = {43}, journal = {Revista brasileira de ciencias do solo}, publisher = {Sociedade Brasileira de Ciencia do Solo}, address = {Vicosa}, issn = {0100-0683}, doi = {10.1590/18069657rbcs20180236}, pages = {21}, year = {2019}, abstract = {Above and underground hydrological processes depend on soil moisture (SM) variability, driven by different environmental factors that seldom are well-monitored, leading to a misunderstanding of soil water temporal patterns. This study investigated the stability of the SM temporal dynamics to different monitoring temporal resolutions around the border between two soil types in a tropical watershed. Four locations were instrumented in a small-scale watershed (5.84 km(2)) within the tropical coast of Northeast Brazil, encompassing different soil types (Espodossolo Humiluvico or Carbic Podzol, and Argissolo Vermelho-Amarelo or Haplic Acrisol), land covers (Atlantic Forest, bush vegetation, and grassland) and topographies (flat and moderate slope). The SM was monitored at a temporal resolution of one hour along the 2013-2014 hydrological year and then resampled a resolutions of 6 h, 12 h, 1 day, 2 days, 4 days, 7 days, and 15 days. Descriptive statistics, temporal variability, time-stability ranking, and hierarchical clustering revealed uneven associations among SM time components. The results show that the time-invariant component ruled SM temporal variability over the time-varying parcel, either at high or low temporal resolutions. Time-steps longer than 2 days affected the mean statistical metrics of the SM time-variant parcel. Additionally, SM at downstream and upstream sites behaved differently, suggesting that the temporal mean was regulated by steady soil properties (slope, restrictive layer, and soil texture), whereas their temporal anomalies were driven by climate (rainfall) and hydrogeological (groundwater level) factors. Therefore, it is concluded that around the border between tropical soil types, the distinct behaviour of time-variant and time-invariant components of SM time series reflects different combinations of their soil properties.}, language = {en} } @article{PenaAnguloNadalRomeroGonzalezHidalgoetal.2019, author = {Pena-Angulo, D. and Nadal-Romero, E. and Gonzalez-Hidalgo, J. C. and Albaladejo, J. and Andreu, V and Bagarello, V and Barhi, H. and Batalla, R. J. and Bernal, S. and Bienes, R. and Campo, J. and Campo-Bescos, M. A. and Canatario-Duarte, A. and Canton, Y. and Casali, J. and Castillo, V and Cerda, Artemi and Cheggour, A. and Cid, Patricio and Cortesi, N. and Desir, G. and Diaz-Pereira, E. and Espigares, T. and Estrany, Joan and Fernandez-Raga, M. and Ferreira, Carla S. S. and Ferro, Vito and Gallart, Francesc and Gimenez, R. and Gimeno, E. and Gomez, J. A. and Gomez-Gutierrez, A. and Gomez-Macpherson, H. and Gonzalez-Pelayo, O. and Hueso-Gonzalez, P. and Kairis, O. and Karatzas, G. P. and Klotz, S. and Kosmas, C. and Lana-Renault, Noemi and Lasanta, T. and Latron, J. and Lazaro, R. and Le Bissonnais, Y. and Le Bouteiller, C. and Licciardello, F. and Lopez-Tarazon, Jos{\´e} Andr{\´e}s and Lucia, A. and Marin, C. and Marques, M. J. and Martinez-Fernandez, J. and Martinez-Mena, M. and Martinez-Murillo, J. F. and Mateos, L. and Mathys, N. and Merino-Martin, L. and Moreno-de las Heras, M. and Moustakas, N. and Nicolau, J. M. and Novara, A. and Pampalone, V and Raclot, D. and Rodriguez-Blanco, M. L. and Rodrigo-Comino, Jes{\´u}s and Romero-Diaz, A. and Roose, E. and Rubio, J. L. and Ruiz-Sinoga, J. D. and Schnabel, S. and Senciales-Gonzalez, J. M. and Simonneaux, V and Sole-Benet, A. and Taguas, E. and Taboada-Castro, M. M. and Taboada-Castro, M. T. and Todisco, Francesca and Ubeda, X. and Varouchakis, E. A. and Vericat, Damia and Wittenberg, L. and Zabaleta, A. and Zorn, M.}, title = {Spatial variability of the relationships of runoff and sediment yield with weather types throughout the Mediterranean basin}, series = {Journal of hydrology}, volume = {571}, journal = {Journal of hydrology}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0022-1694}, doi = {10.1016/j.jhydrol.2019.01.059}, pages = {390 -- 405}, year = {2019}, abstract = {Soil degradation by water is a serious environmental problem worldwide, with specific climatic factors being the major causes. We investigated the relationships between synoptic atmospheric patterns (i.e. weather types, WTs) and runoff, erosion and sediment yield throughout the Mediterranean basin by analyzing a large database of natural rainfall events at 68 research sites in 9 countries. Principal Component Analysis (PCA) was used to identify spatial relationships of the different WTs including three hydro-sedimentary variables: rainfall, runoff, and sediment yield (SY, used to refer to both soil erosion measured at plot scale and sediment yield registered at catchment scale). The results indicated 4 spatial classes of rainfall and runoff: (a) northern sites dependent on North (N) and North West (NW) flows; (b) eastern sites dependent on E and NE flows; (c) southern sites dependent on S and SE flows; and, finally, (d) western sites dependent on W and SW flows. Conversely, three spatial classes are identified for SY characterized by: (a) N and NE flows in northern sites (b) E flows in eastern sites, and (c) W and SW flows in western sites. Most of the rainfall, runoff and SY occurred during a small number of daily events, and just a few WTs accounted for large percentages of the total. Our results confirm that characterization by WT improves understanding of the general conditions under which runoff and SY occur, and provides useful information for understanding the spatial variability of runoff, and SY throughout the Mediterranean basin. The approach used here could be useful to aid of the design of regional water management and soil conservation measures.}, language = {en} } @article{MusterRileyRothetal.2019, author = {Muster, Sina and Riley, William J. and Roth, Kurt and Langer, Moritz and Aleina, Fabio Cresto and Koven, Charles D. and Lange, Stephan and Bartsch, Annett and Grosse, Guido and Wilson, Cathy J. and Jones, Benjamin M. and Boike, Julia}, title = {Size distributions of arctic waterbodies reveal consistent relations in their statistical moments in space and time}, series = {Frontiers in Earth Science}, volume = {7}, journal = {Frontiers in Earth Science}, publisher = {Frontiers Research Foundation}, address = {Lausanne}, issn = {2296-6463}, doi = {10.3389/feart.2019.00005}, pages = {15}, year = {2019}, abstract = {Arctic lowlands are characterized by large numbers of small waterbodies, which are known to affect surface energy budgets and the global carbon cycle. Statistical analysis of their size distributions has been hindered by the shortage of observations at sufficiently high spatial resolutions. This situation has now changed with the high-resolution (<5 m) circum-Arctic Permafrost Region Pond and Lake (PeRL) database recently becoming available. We have used this database to make the first consistent, high-resolution estimation of Arctic waterbody size distributions, with surface areas ranging from 0.0001 km(2) (100 m(2)) to 1 km(2). We found that the size distributions varied greatly across the thirty study regions investigated and that there was no single universal size distribution function (including power-law distribution functions) appropriate across all of the study regions. We did, however, find close relationships between the statistical moments (mean, variance, and skewness) of the waterbody size distributions from different study regions. Specifically, we found that the spatial variance increased linearly with mean waterbody size (R-2 = 0.97, p < 2.2e-16) and that the skewness decreased approximately hyperbolically. We have demonstrated that these relationships (1) hold across the 30 Arctic study regions covering a variety of (bio)climatic and permafrost zones, (2) hold over time in two of these study regions for which multi-decadal satellite imagery is available, and (3) can be reproduced by simulating rising water levels in a high-resolution digital elevation model. The consistent spatial and temporal relationships between the statistical moments of the waterbody size distributions underscore the dominance of topographic controls in lowland permafrost areas. These results provide motivation for further analyses of the factors involved in waterbody development and spatial distribution and for investigations into the possibility of using statistical moments to predict future hydrologic dynamics in the Arctic.}, language = {en} } @article{ReinhardGeisslerBlaum2019, author = {Reinhard, Johanna E. and Geissler, Katja and Blaum, Niels}, title = {Short-term responses of darkling beetles (Coleoptera:Tenebrionidae) to the effects of fire and grazing in savannah rangeland}, series = {Insect Conservation and Diversity}, volume = {12}, journal = {Insect Conservation and Diversity}, number = {1}, publisher = {Wiley}, address = {Hoboken}, issn = {1752-458X}, doi = {10.1111/icad.12324}, pages = {39 -- 48}, year = {2019}, abstract = {Fire and grazing shape biodiversity in savannah landscapes. In land use management, knowing the effects of fire and grazing on biodiversity are important in order to ensure environmental sustainability. Beetles specifically are indicators of the biodiversity response to fire and grazing. A grazing exclusion and burning experiment in a split-plot design was used in order to investigate the interacting effects of fire and wildlife grazing on biomass, diversity, and species composition of darkling beetles (Coleoptera, Tenebrionidae) over time after fire. Darkling beetle species richness and diversity were responding in a three-way-interaction to fire, grazing, and time after fire, whereby biomass of darkling beetles remained unaffected and species compositional changes were attributed to seasonal changes of time only. Fire on ungrazed plots had a negative effect on species diversity and richness 2 weeks and 6 months post fire, whereas fire on grazed plots had no impact on species diversity and richness. Grazing only lowered species diversity and richness 6 months after fire treatments. Results suggest that grazing overrides the effects of fire and that the similar effects caused by fire and grazing are due to niche and assemblage simplification of the habitat.}, language = {en} } @article{SairamSchroeterLuedtkeetal.2019, author = {Sairam, Nivedita and Schr{\"o}ter, Kai and L{\"u}dtke, Stefan and Merz, Bruno and Kreibich, Heidi}, title = {Quantifying Flood Vulnerability Reduction via Private Precaution}, series = {Earth future}, volume = {7}, journal = {Earth future}, number = {3}, publisher = {American Geophysical Union}, address = {Washington}, issn = {2328-4277}, doi = {10.1029/2018EF000994}, pages = {235 -- 249}, year = {2019}, abstract = {Private precaution is an important component in contemporary flood risk management and climate adaptation. However, quantitative knowledge about vulnerability reduction via private precautionary measures is scarce and their effects are hardly considered in loss modeling and risk assessments. However, this is a prerequisite to enable temporally dynamic flood damage and risk modeling, and thus the evaluation of risk management and adaptation strategies. To quantify the average reduction in vulnerability of residential buildings via private precaution empirical vulnerability data (n = 948) is used. Households with and without precautionary measures undertaken before the flood event are classified into treatment and nontreatment groups and matched. Postmatching regression is used to quantify the treatment effect. Additionally, we test state-of-the-art flood loss models regarding their capability to capture this difference in vulnerability. The estimated average treatment effect of implementing private precaution is between 11 and 15 thousand EUR per household, confirming the significant effectiveness of private precautionary measures in reducing flood vulnerability. From all tested flood loss models, the expert Bayesian network-based model BN-FLEMOps and the rule-based loss model FLEMOps perform best in capturing the difference in vulnerability due to private precaution. Thus, the use of such loss models is suggested for flood risk assessments to effectively support evaluations and decision making for adaptable flood risk management.}, language = {en} } @article{LawrenceSchaefer2019, author = {Lawrence, Mark and Sch{\"a}fer, Stefan}, title = {Promises and perils of the Paris Agreement}, series = {Science}, volume = {364}, journal = {Science}, number = {6443}, publisher = {American Association for the Advancement of Science}, address = {Washington}, issn = {0036-8075}, doi = {10.1126/science.aaw4602}, pages = {829 -- 830}, year = {2019}, language = {en} } @article{RoezerKreibichSchroeteretal.2019, author = {R{\"o}zer, Viktor and Kreibich, Heidi and Schr{\"o}ter, Kai and M{\"u}ller, Meike and Sairam, Nivedita and Doss-Gollin, James and Lall, Upmanu and Merz, Bruno}, title = {Probabilistic Models Significantly Reduce Uncertainty in Hurricane Harvey Pluvial Flood Loss Estimates}, series = {Earths future}, volume = {7}, journal = {Earths future}, number = {4}, publisher = {American Geophysical Union}, address = {Washington}, issn = {2328-4277}, doi = {10.1029/2018EF001074}, pages = {384 -- 394}, year = {2019}, abstract = {Pluvial flood risk is mostly excluded in urban flood risk assessment. However, the risk of pluvial flooding is a growing challenge with a projected increase of extreme rainstorms compounding with an ongoing global urbanization. Considered as a flood type with minimal impacts when rainfall rates exceed the capacity of urban drainage systems, the aftermath of rainfall-triggered flooding during Hurricane Harvey and other events show the urgent need to assess the risk of pluvial flooding. Due to the local extent and small-scale variations, the quantification of pluvial flood risk requires risk assessments on high spatial resolutions. While flood hazard and exposure information is becoming increasingly accurate, the estimation of losses is still a poorly understood component of pluvial flood risk quantification. We use a new probabilistic multivariable modeling approach to estimate pluvial flood losses of individual buildings, explicitly accounting for the associated uncertainties. Except for the water depth as the common most important predictor, we identified the drivers for having loss or not and for the degree of loss to be different. Applying this approach to estimate and validate building structure losses during Hurricane Harvey using a property level data set, we find that the reliability and dispersion of predictive loss distributions vary widely depending on the model and aggregation level of property level loss estimates. Our results show that the use of multivariable zero-inflated beta models reduce the 90\% prediction intervalsfor Hurricane Harvey building structure loss estimates on average by 78\% (totalling U.S.\$3.8 billion) compared to commonly used models.}, language = {en} } @article{HerzschuhCaoLaeppleetal.2019, author = {Herzschuh, Ulrike and Cao, Xianyong and Laepple, Thomas and Dallmeyer, Anne and Telford, Richard J. and Ni, Jian and Chen, Fahu and Kong, Zhaochen and Liu, Guangxiu and Liu, Kam-Biu and Liu, Xingqi and Stebich, Martina and Tang, Lingyu and Tian, Fang and Wang, Yongbo and Wischnewski, Juliane and Xu, Qinghai and Yan, Shun and Yang, Zhenjing and Yu, Ge and Zhang, Yun and Zhao, Yan and Zheng, Zhuo}, title = {Position and orientation of the westerly jet determined Holocene rainfall patterns in China}, series = {Nature Communications}, volume = {10}, journal = {Nature Communications}, publisher = {Nature Publ. Group}, address = {London}, issn = {2041-1723}, doi = {10.1038/s41467-019-09866-8}, pages = {8}, year = {2019}, abstract = {Proxy-based reconstructions and modeling of Holocene spatiotemporal precipitation patterns for China and Mongolia have hitherto yielded contradictory results indicating that the basic mechanisms behind the East Asian Summer Monsoon and its interaction with the westerly jet stream remain poorly understood. We present quantitative reconstructions of Holocene precipitation derived from 101 fossil pollen records and analyse them with the help of a minimal empirical model. We show that the westerly jet-stream axis shifted gradually southward and became less tilted since the middle Holocene. This was tracked by the summer monsoon rain band resulting in an early-Holocene precipitation maximum over most of western China, a mid-Holocene maximum in north-central and northeastern China, and a late-Holocene maximum in southeastern China. Our results suggest that a correct simulation of the orientation and position of the westerly jet stream is crucial to the reliable prediction of precipitation patterns in China and Mongolia.}, language = {en} } @article{AyzelHeistermannWinterrath2019, author = {Ayzel, Georgy and Heistermann, Maik and Winterrath, Tanja}, title = {Optical flow models as an open benchmark for radar-based precipitation nowcasting (rainymotion v0.1)}, series = {Geoscientific model development}, journal = {Geoscientific model development}, number = {12}, publisher = {Copernicus Publications}, address = {G{\"o}ttingen}, issn = {1991-9603}, doi = {10.5194/gmd-12-1387-2019}, pages = {1387 -- 1402}, year = {2019}, abstract = {Quantitative precipitation nowcasting (QPN) has become an essential technique in various application contexts, such as early warning or urban sewage control. A common heuristic prediction approach is to track the motion of precipitation features from a sequence of weather radar images and then to displace the precipitation field to the imminent future (minutes to hours) based on that motion, assuming that the intensity of the features remains constant ("Lagrangian persistence"). In that context, "optical flow" has become one of the most popular tracking techniques. Yet the present landscape of computational QPN models still struggles with producing open software implementations. Focusing on this gap, we have developed and extensively benchmarked a stack of models based on different optical flow algorithms for the tracking step and a set of parsimonious extrapolation procedures based on image warping and advection. We demonstrate that these models provide skillful predictions comparable with or even superior to state-of-the-art operational software. Our software library ("rainymotion") for precipitation nowcasting is written in the Python programming language and openly available at GitHub (https://github.com/hydrogo/rainymotion, Ayzel et al., 2019). That way, the library may serve as a tool for providing fast, free, and transparent solutions that could serve as a benchmark for further model development and hypothesis testing - a benchmark that is far more advanced than the conventional benchmark of Eulerian persistence commonly used in QPN verification experiments.}, language = {en} }