@article{VehKorupWalz2019, author = {Veh, Georg and Korup, Oliver and Walz, Ariane}, title = {Hazard from Himalayan glacier lake outburst floods}, series = {Proceedings of the National Academy of Sciences of the United States of America : PNAS}, volume = {117}, journal = {Proceedings of the National Academy of Sciences of the United States of America : PNAS}, number = {2}, publisher = {National Academy of Sciences}, address = {Washington}, issn = {0027-8424}, doi = {10.1073/pnas.1914898117}, pages = {907 -- 912}, year = {2019}, abstract = {Sustained glacier melt in the Himalayas has gradually spawned more than 5,000 glacier lakes that are dammed by potentially unstable moraines. When such dams break, glacier lake outburst floods (GLOFs) can cause catastrophic societal and geomorphic impacts. We present a robust probabilistic estimate of average GLOFs return periods in the Himalayan region, drawing on 5.4 billion simulations. We find that the 100-y outburst flood has an average volume of 33.5(+3.7)/(-3.7) x 10(6) m(3) (posterior mean and 95\% highest density interval [HDI]) with a peak discharge of 15,600(+2.000)/(-1,800) m(3).S-1. Our estimated GLOF hazard is tied to the rate of historic lake outbursts and the number of present lakes, which both are highest in the Eastern Himalayas. There, the estimated 100-y GLOF discharge (similar to 14,500 m(3).s(-1)) is more than 3 times that of the adjacent Nyainqentanglha Mountains, and at least an order of magnitude higher than in the Hindu Kush, Karakoram, and Western Himalayas. The GLOF hazard may increase in these regions that currently have large glaciers, but few lakes, if future projected ice loss generates more unstable moraine-dammed lakes than we recognize today. Flood peaks from GLOFs mostly attenuate within Himalayan headwaters, but can rival monsoon-fed discharges in major rivers hundreds to thousands of kilometers downstream. Projections of future hazard from meteorological floods need to account for the extreme runoffs during lake outbursts, given the increasing trends in population, infrastructure, and hydropower projects in Himalayan headwaters.}, language = {en} } @article{vonSpechtOeztuerkVehetal.2019, author = {von Specht, Sebastian and {\"O}zt{\"u}rk, Ugur and Veh, Georg and Cotton, Fabrice and Korup, Oliver}, title = {Effects of finite source rupture on landslide triggering}, series = {Solid earth}, volume = {10}, journal = {Solid earth}, number = {2}, publisher = {Copernicus}, address = {G{\"o}ttingen}, issn = {1869-9510}, doi = {10.5194/se-10-463-2019}, pages = {463 -- 486}, year = {2019}, abstract = {The propagation of a seismic rupture on a fault introduces spatial variations in the seismic wave field surrounding the fault. This directivity effect results in larger shaking amplitudes in the rupture propagation direction. Its seismic radiation pattern also causes amplitude variations between the strike-normal and strike-parallel components of horizontal ground motion. We investigated the landslide response to these effects during the 2016 Kumamoto earthquake (M-w 7.1) in central Kyushu (Japan). Although the distribution of some 1500 earthquake-triggered landslides as a function of rupture distance is consistent with the observed Arias intensity, the landslides were more concentrated to the northeast of the southwest-northeast striking rupture. We examined several landslide susceptibility factors: hillslope inclination, the median amplification factor (MAF) of ground shaking, lithology, land cover, and topographic wetness. None of these factors sufficiently explains the landslide distribution or orientation (aspect), although the landslide head scarps have an elevated hillslope inclination and MAF. We propose a new physics-based ground-motion model (GMM) that accounts for the seismic rupture effects, and we demonstrate that the low-frequency seismic radiation pattern is consistent with the overall landslide distribution. Its spatial pattern is influenced by the rupture directivity effect, whereas landslide aspect is influenced by amplitude variations between the fault-normal and fault-parallel motion at frequencies < 2 Hz. This azimuth dependence implies that comparable landslide concentrations can occur at different distances from the rupture. This quantitative link between the prevalent landslide aspect and the low-frequency seismic radiation pattern can improve coseismic landslide hazard assessment.}, language = {en} }