@misc{GvaramadzeKniazevMiroshnichenkoetal.2012, author = {Gvaramadze, V. V. and Kniazev, A. Y. and Miroshnichenko, A. S. and Berdnikov, Leonid N. and Langer, N. and Stringfellow, G. S. and Todt, Helge Tobias and Hamann, Wolf-Rainer and Grebel, E. K. and Buckley, D. and Crause, L. and Crawford, S. and Gulbis, A. and Hettlage, C. and Hooper, E. and Husser, T. -O. and Kotze, P. and Loaring, N. and Nordsieck, K. H. and O'Donoghue, D. and Pickering, T. and Potter, S. and Colmenero, E. Romero and Vaisanen, P. and Williams, T. and Wolf, M. and Reichart, D. E. and Ivarsen, K. M. and Haislip, J. B. and Nysewander, M. C. and LaCluyze, A. P.}, title = {Discovery of two new Galactic candidate luminous blue variables with Wide-field Infrared Survey Explorer}, series = {Monthly notices of the Royal Astronomical Society}, volume = {421}, journal = {Monthly notices of the Royal Astronomical Society}, number = {4}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0035-8711}, doi = {10.1111/j.1365-2966.2012.20556.x}, pages = {3325 -- 3337}, year = {2012}, abstract = {We report the discovery of two new Galactic candidate luminous blue variable (LBV) stars via detection of circular shells (typical of confirmed and candidate LBVs) and follow-up spectroscopy of their central stars. The shells were detected at 22 mu m in the archival data of the Mid-Infrared All Sky Survey carried out with the Wide-field Infrared Survey Explorer (WISE). Follow-up optical spectroscopy of the central stars of the shells conducted with the renewed Southern African Large Telescope (SALT) showed that their spectra are very similar to those of the well-known LBVs P Cygni and AG Car, and the recently discovered candidate LBV MN112, which implies the LBV classification for these stars as well. The LBV classification of both stars is supported by detection of their significant photometric variability: one of them brightened in the R and I bands by 0.68 +/- 0.10 and 0.61 +/- 0.04 mag, respectively, during the last 1318 years, while the second one (known as Hen 3-1383) varies its B, V, R, I and Ks brightnesses by similar or equal to 0.50.9 mag on time-scales from 10 d to decades. We also found significant changes in the spectrum of Hen 3-1383 on a time-scale of similar or equal to 3 months, which provides additional support for the LBV classification of this star. Further spectrophotometric monitoring of both stars is required to firmly prove their LBV status. We discuss a connection between the location of massive stars in the field and their fast rotation, and suggest that the LBV activity of the newly discovered candidate LBVs might be directly related to their possible runaway status.}, language = {en} } @article{SanderHamannTodt2012, author = {Sander, A. and Hamann, Wolf-Rainer and Todt, Helge Tobias}, title = {The Galactic WC stars Stellar parameters from spectral analyses indicate a new evolutionary sequence}, series = {Astronomy and astrophysics : an international weekly journal}, volume = {540}, journal = {Astronomy and astrophysics : an international weekly journal}, publisher = {EDP Sciences}, address = {Les Ulis}, issn = {0004-6361}, doi = {10.1051/0004-6361/201117830}, pages = {79}, year = {2012}, abstract = {Context. The life cycles of massive stars from the main sequence to their explosion as supernovae or gamma ray bursts are not yet fully clear, and the empirical results from spectral analyses are partly in conflict with current evolutionary models. The spectral analysis of Wolf-Rayet stars requires the detailed modeling of expanding stellar atmospheres in non-LTE. The Galactic WN stars have been comprehensively analyzed with such models of the latest stage of sophistication, while a similarly comprehensive study of the Galactic WC sample remains undone. Aims. We aim to establish the stellar parameters and mass-loss rates of the Galactic WC stars. These data provide the empirical basis of studies of (i) the role of WC stars in the evolution of massive stars, (ii) the wind-driving mechanisms, and (iii) the feedback of WC stars as input to models of the chemical and dynamical evolution of galaxies. Methods. We analyze the nearly complete sample of un-obscured Galactic WC stars, using optical spectra as well as ultraviolet spectra when available. The observations are fitted with theoretical spectra, using the Potsdam Wolf-Rayet (PoWR) model atmosphere code. A large grid of line-blanked models has been established for the range of WC subtypes WC4 - WC8, and smaller grids for the WC9 parameter domain. Both WO stars and WN/WC transit types are also analyzed using special models. Results. Stellar and atmospheric parameters are derived for more than 50 Galactic WC and two WO stars, covering almost the whole Galactic WC population as far as the stars are single, and un-obscured in the visual. In the Hertzsprung-Russell diagram, the WC stars reside between the hydrogen and the helium zero-age main sequences, having luminosities L from 10(4.9) to 10(5.6) L-circle dot. The mass-loss rates scale very tightly with L-0.8. The two WO stars in our sample turn out to be outstandingly hot (approximate to 200 kK) and do not fit into the WC scheme. Conclusions. By comparing the empirical WC positions in the Hertzsprung-Russell diagram with evolutionary models, and from recent supernova statistics, we conclude that WC stars have evolved from initial masses between 20 solar masses and 45 M-circle dot. In contrast to previous assumptions, it seems that WC stars in general do not descend from the most massive stars. Only the WO stars might stem from progenitors that have been initially more massive than 45 M-circle dot.}, language = {en} }