@article{KrtičkaFeldmeier2021, author = {Krtička, Jiř{\´i} and Feldmeier, Achim}, title = {Stochastic light variations in hot stars from wind instability}, series = {Astronomy and astrophysics : an international weekly journal / European Southern Observatory (ESO)}, volume = {648}, journal = {Astronomy and astrophysics : an international weekly journal / European Southern Observatory (ESO)}, publisher = {EDP Sciences}, address = {Les Ulis}, issn = {1432-0746}, doi = {10.1051/0004-6361/202040148}, pages = {9}, year = {2021}, abstract = {Context Line-driven wind instability is expected to cause small-scale wind inhomogeneities, X-ray emission, and wind line profile variability. The instability can already develop around the sonic point if it is initiated close to the photosphere due to stochastic turbulent motions. In such cases, it may leave its imprint on the light curve as a result of wind blanketing. Aims We study the photometric signatures of the line-driven wind instability. Methods We used line-driven wind instability simulations to determine the wind variability close to the star. We applied two types of boundary perturbations: a sinusoidal one that enables us to study in detail the development of the instability and a stochastic one given by a Langevin process that provides a more realistic boundary perturbation. We estimated the photometric variability from the resulting mass-flux variations. The variability was simulated assuming that the wind consists of a large number of independent conical wind sectors. We compared the simulated light curves with TESS light curves of OB stars that show stochastic variability. Results We find two typical signatures of line-driven wind instability in photometric data: a knee in the power spectrum of magnitude fluctuations, which appears due to engulfment of small-scale structure by larger structures, and a negative skewness of the distribution of fluctuations, which is the result of spatial dominance of rarefied regions. These features endure even when combining the light curves from independent wind sectors. Conclusions The stochastic photometric variability of OB stars bears certain signatures of the line-driven wind instability. The distribution function of observed photometric data shows negative skewness and the power spectra of a fraction of light curves exhibit a knee. This can be explained as a result of the line-driven wind instability triggered by stochastic base perturbations.}, language = {en} } @article{VosBobrickVuckovic2020, author = {Vos, Joris and Bobrick, Alexey and Vuckovic, Maja}, title = {Observed binary populations reflect the Galactic history}, series = {Astronomy and astrophysics : an international weekly journal / European Southern Observatory (ESO)}, volume = {641}, journal = {Astronomy and astrophysics : an international weekly journal / European Southern Observatory (ESO)}, publisher = {EDP Sciences}, address = {Les Ulis}, issn = {1432-0746}, doi = {10.1051/0004-6361/201937195}, pages = {19}, year = {2020}, abstract = {Context. Wide hot subdwarf B (sdB) binaries with main-sequence companions are outcomes of stable mass transfer from evolved red giants. The orbits of these binaries show a strong correlation between their orbital periods and mass ratios. The origins of this correlation have, so far, been lacking a conclusive explanation. Aims. We aim to find a binary evolution model which can explain the observed correlation. Methods. Radii of evolved red giants, and hence the resulting orbital periods, strongly depend on their metallicity. We performed a small but statistically significant binary population synthesis study with the binary stellar evolution code MESA. We used a standard model for binary mass loss and a standard metallicity history of the Galaxy. The resulting sdB systems were selected based on the same criteria as was used in observations and then compared with the observed population. Results. We have achieved an excellent match to the observed period-mass ratio correlation without explicitly fine-tuning any parameters. Furthermore, our models produce a very good match to the observed period-metallicity correlation. We predict several new correlations, which link the observed sdB binaries to their progenitors, and a correlation between the orbital period, metallicity, and core mass for subdwarfs and young low-mass helium white dwarfs. We also predict that sdB binaries have distinct orbital properties depending on whether they formed in the Galactic bulge, thin or thick disc, or the halo. Conclusions We demonstrate, for the first time, how the metallicity history of the Milky Way is imprinted in the properties of the observed post-mass transfer binaries. We show that Galactic chemical evolution is an important factor in binary population studies of interacting systems containing at least one evolved low-mass (M-init< 1.6 M-circle dot) component. Finally, we provide an observationally supported model of mass transfer from low-mass red giants onto main-sequence stars.}, language = {en} } @article{SanderVinkHamann2019, author = {Sander, Andreas Alexander Christoph and Vink, Jorick S. and Hamann, Wolf-Rainer}, title = {Driving classical Wolf-Rayet winds}, series = {Monthly notices of the Royal Astronomical Society}, volume = {491}, journal = {Monthly notices of the Royal Astronomical Society}, number = {3}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0035-8711}, doi = {10.1093/mnras/stz3064}, pages = {4406 -- 4425}, year = {2019}, abstract = {Classical Wolf-Rayet (cWR) stars are at a crucial evolutionary stage for constraining the fates of massive stars. The feedback of these hot, hydrogen-depleted stars dominates their surrounding by tremendous injections of ionizing radiation and kinetic energy. The strength of a Wolf-Rayet (WR) wind decides the eventual mass of its remnant, likely a massive black hole. However, despite their major influence and importance for gravitational wave detection statistics, WR winds are particularly poorly understood. In this paper, we introduce the first set of hydrodynamically consistent stellar atmosphere models for cWR stars of both the carbon (C) and the nitrogen (N) sequence, i.e. WC and WN stars, as a function of stellar luminosity-to-mass ratio (or Eddington Gamma) and metallicity. We demonstrate the inapplicability of the CAK wind theory for cWR stars and confirm earlier findings that their winds are launched at the (hot) iron (Fe) opacity peak. For log Z/Z(circle dot) > -2, Fe is also the main accelerator throughout the wind. Contrasting previous claims of a sharp lower mass-loss limit forWR stars, we obtain a smooth transition to optically thin winds. Furthermore, we find a strong dependence of the mass-loss rates on Eddington Gamma, both at solar and subsolar metallicity. Increases inWCcarbon and oxygen abundances turn out to slightly reduce the predicted mass-loss rates. Calculations at subsolar metallicities indicate that below the metallicity of the Small Magellanic Cloud, WR mass-loss rates decrease much faster than previously assumed, potentially allowing for high black hole masses even in the local Universe.}, language = {en} } @article{RamachandranHamannOskinovaetal.2019, author = {Ramachandran, Varsha and Hamann, Wolf-Rainer and Oskinova, Lida and Gallagher, J. S. and Hainich, Rainer and Shenar, Tomer and Sander, Andreas Alexander Christoph and Todt, Helge Tobias and Fulmer, Leah M.}, title = {Testing massive star evolution, star formation history, and feedback at low metallicity}, series = {Astronomy and astrophysics : an international weekly journal}, volume = {625}, journal = {Astronomy and astrophysics : an international weekly journal}, publisher = {EDP Sciences}, address = {Les Ulis}, issn = {1432-0746}, doi = {10.1051/0004-6361/201935365}, pages = {20}, year = {2019}, abstract = {Stars that start their lives with spectral types O and early B are the progenitors of core-collapse supernovae, long gamma-ray bursts, neutron stars, and black holes. These massive stars are the primary sources of stellar feedback in star-forming galaxies. At low metallicities, the properties of massive stars and their evolution are not yet fully explored. Here we report a spectroscopic study of 320 massive stars of spectral types O (23 stars) and B (297 stars) in the Wing of the Small Magellanic Cloud (SMC). The spectra, which we obtained with the ESO Very Large Telescope, were analyzed using state-of-the-art stellar atmosphere models, and the stellar parameters were determined. We find that the stellar winds of our sample stars are generally much weaker than theoretically expected. The stellar rotation rates show broad, tentatively bimodal distributions. The upper Hertzsprung-Russell diagram (HRD) is well populated by the stars of our sample from a specific field in the SMC Wing. A few very luminous O stars are found close to the main sequence, while all other, slightly evolved stars obey a strict luminosity limit. Considering additional massive stars in evolved stages, with published parameters and located all over the SMC, essentially confirms this picture. The comparison with single-star evolutionary tracks suggests a dichotomy in the fate of massive stars in the SMC. Only stars with an initial mass below similar to 30 M-circle dot seem to evolve from the main sequence to the cool side of the HRD to become a red supergiant and to explode as type II-P supernova. In contrast, stars with initially more than similar to 30 M-circle dot appear to stay always hot and might evolve quasi chemically homogeneously, finally collapsing to relatively massive black holes. However, we find no indication that chemical mixing is correlated with rapid rotation. We measured the key parameters of stellar feedback and established the links between the rates of star formation and supernovae. Our study demonstrates that in metal-poor environments stellar feedback is dominated by core-collapse supernovae in combination with winds and ionizing radiation supplied by a few of the most massive stars. We found indications of the stochastic mode of massive star formation, where the resulting stellar population is fully capable of producing large-scale structures such as the supergiant shell SMC-SGS 1 in the Wing. The low level of feedback in metal-poor stellar populations allows star formation episodes to persist over long timescales.}, language = {en} } @article{SanderHamannTodtetal.2019, author = {Sander, Andreas Alexander Christoph and Hamann, Wolf-Rainer and Todt, Helge Tobias and Hainich, Rainer and Shenar, Tomer and Ramachandran, Varsha and Oskinova, Lida}, title = {The Galactic WC and WO stars}, series = {Astronomy and astrophysics : an international weekly journal}, volume = {621}, journal = {Astronomy and astrophysics : an international weekly journal}, publisher = {EDP Sciences}, address = {Les Ulis}, issn = {1432-0746}, doi = {10.1051/0004-6361/201833712}, pages = {19}, year = {2019}, abstract = {Wolf-Rayet stars of the carbon sequence (WC stars) are an important cornerstone in the late evolution of massive stars before their core collapse. As core-helium burning, hydrogen-free objects with huge mass-loss, they are likely the last observable stage before collapse and thus promising progenitor candidates for type Ib/c supernovae. Their strong mass-loss furthermore provides challenges and constraints to the theory of radiatively driven winds. Thus, the determination of the WC star parameters is of major importance for several astrophysical fields. With Gaia DR2, for the first time parallaxes for a large sample of Galactic WC stars are available, removing major uncertainties inherent to earlier studies. In this work, we re-examine a previously studied sample of WC stars to derive key properties of the Galactic WC population. All quantities depending on the distance are updated, while the underlying spectral analyzes remain untouched. Contrasting earlier assumptions, our study yields that WC stars of the same subtype can significantly vary in absolute magnitude. With Gaia DR2, the picture of the Galactic WC population becomes more complex: We obtain luminosities ranging from log L/L-circle dot = 4.9-6.0 with one outlier (WR 119) having log L/L-circle dot = 4.7. This indicates that the WC stars are likely formed from a broader initial mass range than previously assumed. We obtain mass-loss rates ranging between log(M) over dot = -5.1 and -4.1, with (M) over dot proportional to L-0.68 and a linear scaling of the modified wind momentum with luminosity. We discuss the implications for stellar evolution, including unsolved issues regarding the need of envelope inflation to address the WR radius problem, and the open questions in regard to the connection of WR stars with Gamma-ray bursts. WC and WO stars are progenitors of massive black holes, collapsing either silently or in a supernova that most-likely has to be preceded by a WO stage.}, language = {en} } @article{HamannGraefenerLiermannetal.2019, author = {Hamann, Wolf-Rainer and Gr{\"a}fener, G. and Liermann, A. and Hainich, Rainer and Sander, Andreas Alexander Christoph and Shenar, Tomer and Ramachandran, Varsha and Todt, Helge Tobias and Oskinova, Lida}, title = {The Galactic WN stars revisited}, series = {Astronomy and astrophysics : an international weekly journal}, volume = {625}, journal = {Astronomy and astrophysics : an international weekly journal}, publisher = {EDP Sciences}, address = {Les Ulis}, issn = {1432-0746}, doi = {10.1051/0004-6361/201834850}, pages = {11}, year = {2019}, abstract = {Comprehensive spectral analyses of the Galactic Wolf-Rayet stars of the nitrogen sequence (i.e. the WN subclass) have been performed in a previous paper. However, the distances of these objects were poorly known. Distances have a direct impact on the "absolute" parameters, such as luminosities and mass-loss rates. The recent Gaia Data Release (DR2) of trigonometric parallaxes includes nearly all WN stars of our Galactic sample. In the present paper, we apply the new distances to the previously analyzed Galactic WN stars and rescale the results accordingly. On this basis, we present a revised catalog of 55 Galactic WN stars with their stellar and wind parameters. The correlations between mass-loss rate and luminosity show a large scatter, for the hydrogen-free WN stars as well as for those with detectable hydrogen. The slopes of the log L - log M correlations are shallower than found previously. The empirical Hertzsprung-Russell diagram (HRD) still shows the previously established dichotomy between the hydrogen-free early WN subtypes that are located on the hot side of the zero-age main sequence (ZAMS), and the late WN subtypes, which show hydrogen and reside mostly at cooler temperatures than the ZAMS (with few exceptions). However, with the new distances, the distribution of stellar luminosities became more continuous than obtained previously. The hydrogen-showing stars of late WN subtype are still found to be typically more luminous than the hydrogen-free early subtypes, but there is a range of luminosities where both subclasses overlap. The empirical HRD of the Galactic single WN stars is compared with recent evolutionary tracks. Neither these single-star evolutionary models nor binary scenarios can provide a fully satisfactory explanation for the parameters of these objects and their location in the HRD.}, language = {en} } @article{HainichRamachandranShenaretal.2019, author = {Hainich, Rainer and Ramachandran, Varsha and Shenar, Tomer and Sander, Andreas Alexander Christoph and Todt, Helge Tobias and Gruner, David and Oskinova, Lida and Hamann, Wolf-Rainer}, title = {PoWR grids of non-LTE model atmospheres for OB-type stars of various metallicities}, series = {Astronomy and astrophysics : an international weekly journal}, volume = {621}, journal = {Astronomy and astrophysics : an international weekly journal}, publisher = {EDP Sciences}, address = {Les Ulis}, issn = {1432-0746}, doi = {10.1051/0004-6361/201833787}, pages = {12}, year = {2019}, abstract = {The study of massive stars in different metallicity environments is a central topic of current stellar research. The spectral analysis of massive stars requires adequate model atmospheres. The computation of such models is difficult and time-consuming. Therefore, spectral analyses are greatly facilitated if they can refer to existing grids of models. Here we provide grids of model atmospheres for OB-type stars at metallicities corresponding to the Small and Large Magellanic Clouds, as well as to solar metallicity. In total, the grids comprise 785 individual models. The models were calculated using the state-of-the-art Potsdam Wolf-Rayet (PoWR) model atmosphere code. The parameter domain of the grids was set up using stellar evolution tracks. For all these models, we provide normalized and flux-calibrated spectra, spectral energy distributions, feedback parameters such as ionizing photons, Zanstra temperatures, and photometric magnitudes. The atmospheric structures (the density and temperature stratification) are available as well. All these data are publicly accessible through the PoWR website.}, language = {en} } @article{KurfuerstFeldmeierKrticka2018, author = {Kurf{\"u}rst, P. and Feldmeier, Achim and Krticka, Jiri}, title = {Two-dimensional modeling of density and thermal structure of dense circumstellar outflowing disks}, series = {Astronomy and astrophysics : an international weekly journal}, volume = {613}, journal = {Astronomy and astrophysics : an international weekly journal}, publisher = {EDP Sciences}, address = {Les Ulis}, issn = {1432-0746}, doi = {10.1051/0004-6361/201731300}, pages = {24}, year = {2018}, abstract = {Context. Evolution of massive stars is affected by a significant loss of mass either via (nearly) spherically symmetric stellar winds or by aspherical mass-loss mechanisms, namely the outflowing equatorial disks. However, the scenario that leads to the formation of a disk or rings of gas and dust around massive stars is still under debate. It is also unclear how various forming physical mechanisms of the circumstellar environment affect its shape and density, as well as its kinematic and thermal structure. Results. Our models show the geometric distribution and contribution of viscous heating that begins to dominate in the central part of the disk for mass-loss rates higher than (M) over dot greater than or similar to 10(-10) M-circle dot yr(-1). In the models of dense viscous disks with (M) over dot > 10(-8) M-circle dot yr(-1), the viscosity increases the central temperature up to several tens of thousands of Kelvins, however the temperature rapidly drops with radius and with distance from the disk midplane. The high mass-loss rates and high viscosity lead to instabilities with significant waves or bumps in density and temperature in the very inner disk region. Conclusions. The two-dimensional radial-vertical models of dense outflowing disks including the full Navier-Stokes viscosity terms show very high temperatures that are however limited to only the central disk cores inside the optically thick area, while near the edge of the optically thick region the temperature may be low enough for the existence of neutral hydrogen, for example.}, language = {en} } @article{KrtickaFeldmeier2018, author = {Krticka, Jiri and Feldmeier, Achim}, title = {Light variations due to the line-driven wind instability and wind blanketing in O stars}, series = {Astronomy and astrophysics : an international weekly journal}, volume = {617}, journal = {Astronomy and astrophysics : an international weekly journal}, publisher = {EDP Sciences}, address = {Les Ulis}, issn = {1432-0746}, doi = {10.1051/0004-6361/201731614}, pages = {7}, year = {2018}, abstract = {A small fraction of the radiative flux emitted by hot stars is absorbed by their winds and redistributed towards longer wavelengths. This effect, which leads also to the heating of the stellar photosphere, is termed wind blanketing. For stars with variable winds, the effect of wind blanketing may lead to the photometric variability. We have studied the consequences of line driven wind instability and wind blanketing for the light variability of O stars. We combined the results of wind hydrodynamic simulations and of global wind models to predict the light variability of hot stars due to the wind blanketing and instability. The wind instability causes stochastic light variability with amplitude of the order of tens of millimagnitudes and a typical timescale of the order of hours for spatially coherent wind structure. The amplitude is of the order of millimagnitudes when assuming that the wind consists of large number of independent concentric cones. The variability with such amplitude is observable using present space borne photometers. We show that the simulated light curve is similar to the light curves of O stars obtained using BRITE and CoRoT satellites.}, language = {en} } @article{HainichOskinovaShenaretal.2018, author = {Hainich, Rainer and Oskinova, Lida and Shenar, Tomer and Marchant Campos, Pablo and Eldridge, J. J. and Sander, Andreas Alexander Christoph and Hamann, Wolf-Rainer and Langer, Norbert and Todt, Helge Tobias}, title = {Observational properties of massive black hole binary progenitors}, series = {Astronomy and astrophysics : an international weekly journal}, volume = {609}, journal = {Astronomy and astrophysics : an international weekly journal}, publisher = {EDP Sciences}, address = {Les Ulis}, issn = {1432-0746}, doi = {10.1051/0004-6361/201731449}, pages = {62}, year = {2018}, abstract = {Context: The first directly detected gravitational waves (GW 150914) were emitted by two coalescing black holes (BHs) with masses of ≈ 36 M⊙ and ≈ 29 M⊙. Several scenarios have been proposed to put this detection into an astrophysical context. The evolution of an isolated massive binary system is among commonly considered models. Aims: Various groups have performed detailed binary-evolution calculations that lead to BH merger events. However, the question remains open as to whether binary systems with the predicted properties really exist. The aim of this paper is to help observers to close this gap by providing spectral characteristics of massive binary BH progenitors during a phase where at least one of the companions is still non-degenerate. Methods: Stellar evolution models predict fundamental stellar parameters. Using these as input for our stellar atmosphere code (Potsdam Wolf-Rayet), we compute a set of models for selected evolutionary stages of massive merging BH progenitors at different metallicities. Results: The synthetic spectra obtained from our atmosphere calculations reveal that progenitors of massive BH merger events start their lives as O2-3V stars that evolve to early-type blue supergiants before they undergo core-collapse during the Wolf-Rayet phase. When the primary has collapsed, the remaining system will appear as a wind-fed high-mass X-ray binary. Based on our atmosphere models, we provide feedback parameters, broad band magnitudes, and spectral templates that should help to identify such binaries in the future. Conclusions: While the predicted parameter space for massive BH binary progenitors is partly realized in nature, none of the known massive binaries match our synthetic spectra of massive BH binary progenitors exactly. Comparisons of empirically determined mass-loss rates with those assumed by evolution calculations reveal significant differences. The consideration of the empirical mass-loss rates in evolution calculations will possibly entail a shift of the maximum in the predicted binary-BH merger rate to higher metallicities, that is, more candidates should be expected in our cosmic neighborhood than previously assumed.}, language = {en} } @article{SanderFuerstKretschmaretal.2018, author = {Sander, Andreas Alexander Christoph and F{\"u}rst, F. and Kretschmar, P. and Oskinova, Lida and Todt, Helge Tobias and Hainich, Rainer and Shenar, Tomer and Hamann, Wolf-Rainer}, title = {Coupling hydrodynamics with comoving frame radiative transfer}, series = {Astronomy and astrophysics : an international weekly journal}, volume = {610}, journal = {Astronomy and astrophysics : an international weekly journal}, publisher = {EDP Sciences}, address = {Les Ulis}, issn = {1432-0746}, doi = {10.1051/0004-6361/201731575}, pages = {19}, year = {2018}, abstract = {Aims. To gain a realistic picture of the donor star in Vela X-1, we constructed a hydrodynamically consistent atmosphere model describing the wind stratification while properly reproducing the observed donor spectrum. To investigate how X-ray illumination affects the stellar wind, we calculated additional models for different X-ray luminosity regimes. Methods. We used the recently updated version of the Potsdam Wolf-Rayet code to consistently solve the hydrodynamic equation together with the statistical equations and the radiative transfer. Results. The wind flow in Vela X-1 is driven by ions from various elements, with Fe III and S III leading in the outer wind. The model-predicted mass-loss rate is in line with earlier empirical studies. The mass-loss rate is almost unaffected by the presence of the accreting NS in the wind. The terminal wind velocity is confirmed at u(infinity) approximate to 600 km s(-1). On the other hand, the wind velocity in the inner region where the NS is located is only approximate to 100 km s(-1), which is not expected on the basis of a standard beta-velocity law. In models with an enhanced level of X-rays, the velocity field in the outer wind can be altered. If the X-ray flux is too high, the acceleration breaks down because the ionization increases. Conclusions. Accounting for radiation hydrodynamics, our Vela X-1 donor atmosphere model reveals a low wind speed at the NS location, and it provides quantitative information on wind driving in this important HMXB.}, language = {en} } @article{MunozMoffatHilletal.2017, author = {Munoz, Melissa and Moffat, Anthony F. J. and Hill, Grant M. and Shenar, Tomer and Richardson, Noel D. and Pablo, Herbert and St-Louis, Nicole and Ramiaramanantsoa, Tahina}, title = {WR 148: identifying the companion of an extreme runaway massive binary}, series = {Monthly notices of the Royal Astronomical Society}, volume = {467}, journal = {Monthly notices of the Royal Astronomical Society}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0035-8711}, doi = {10.1093/mnras/stw2283}, pages = {3105 -- 3121}, year = {2017}, abstract = {WR 148 (HD 197406) is an extreme runaway system considered to be a potential candidate for a short-period (4.3173 d) rare WR + compact object binary. Provided with new high-resolution, high signal-to-noise spectra from the Keck observatory, we determine the orbital parameters for both the primary WR and the secondary, yielding respective projected orbital velocity amplitudes of 88.1 ± 3.8\&\#8201;km\&\#8201;s\&\#8722;1 and 79.2 ± 3.1\&\#8201;km\&\#8201;s\&\#8722;1 and implying a mass ratio of 1.1 ± 0.1. We then apply the shift-and-add technique to disentangle the spectra and obtain spectra compatible with a WN7ha and an O4-6 star. Considering an orbital inclination of \&\#8764;67°, derived from previous polarimetry observations, the system's total mass would be a mere 2-3M\&\#8857;\&\#8288;, an unprecedented result for a putative massive binary system. However, a system comprising a 37M\&\#8857; secondary (typical mass of an O5V star) and a 33M\&\#8857; primary (given the mass ratio) would infer an inclination of \&\#8764;18°. We therefore reconsider the previous methods of deriving the orbital inclination based on time-dependent polarimetry and photometry. While the polarimetric results are inconclusive requiring better data, the photometric results favour low inclinations. Finally, we compute WR 148's space velocity and retrace the runaway's trajectory back to the Galactic plane (GP). With an ejection velocity of 198 ± 27\&\#8201;km\&\#8201;s\&\#8722;1 and a travel time of 4.7 ± 0.8 Myr to reach its current location, WR 148 was most likely ejected via dynamical interactions in a young cluster.}, language = {en} } @article{SanderHamannTodtetal.2017, author = {Sander, Andreas Alexander Christoph and Hamann, Wolf-Rainer and Todt, Helge Tobias and Hainich, Rainer and Shenar, Tomer}, title = {Coupling hydrodynamics with comoving frame radiative transfer I. A unified approach for OB and WR stars}, series = {Astronomy and astrophysics : an international weekly journal}, volume = {603}, journal = {Astronomy and astrophysics : an international weekly journal}, publisher = {EDP Sciences}, address = {Les Ulis}, issn = {1432-0746}, doi = {10.1051/0004-6361/201730642}, pages = {14}, year = {2017}, abstract = {Context. For more than two decades, stellar atmosphere codes have been used to derive the stellar and wind parameters of massive stars. Although they have become a powerful tool and sufficiently reproduce the observed spectral appearance, they can hardly be used for more than measuring parameters. One major obstacle is their inconsistency between the calculated radiation field and the wind stratification due to the usage of prescribed mass-loss rates and wind-velocity fields. Aims. We present the concepts for a new generation of hydrodynamically consistent non-local thermodynamical equilibrium (nonLTE) stellar atmosphere models that allow for detailed studies of radiation-driven stellar winds. As a first demonstration, this new kind of model is applied to a massive O star. Methods. Based on earlier works, the PoWR code has been extended with the option to consistently solve the hydrodynamic equation together with the statistical equations and the radiative transfer in order to obtain a hydrodynamically consistent atmosphere stratification. In these models, the whole velocity field is iteratively updated together with an adjustment of the mass-loss rate. Results. The concepts for obtaining hydrodynamically consistent models using a comoving-frame radiative transfer are outlined. To provide a useful benchmark, we present a demonstration model, which was motivated to describe the well-studied O4 supergiant zeta Pup. The obtained stellar and wind parameters are within the current range of literature values. Conclusions. For the first time, the PoWR code has been used to obtain a hydrodynamically consistent model for a massive O star. This has been achieved by a profound revision of earlier concepts used for Wolf-Rayet stars. The velocity field is shaped by various elements contributing to the radiative acceleration, especially in the outer wind. The results further indicate that for more dense winds deviations from a standard beta-law occur.}, language = {en} } @article{OskinovaHuenemoerderHamannetal.2017, author = {Oskinova, Lida and Huenemoerder, D. P. and Hamann, Wolf-Rainer and Shenar, Tomer and Sander, Andreas Alexander Christoph and Ignace, R. and Todt, Helge Tobias and Hainich, Rainer}, title = {On the Binary Nature of Massive Blue Hypergiants: High-resolution X-Ray Spectroscopy Suggests That Cyg OB2 12 is a Colliding Wind Binary}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, volume = {845}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {0004-637X}, doi = {10.3847/1538-4357/aa7e79}, pages = {11}, year = {2017}, abstract = {The blue hypergiant Cyg OB2 12 (B3Ia(+)) is a representative member of the class of very massive stars in a poorly understood evolutionary stage. We obtained its high-resolution X-ray spectrum using the Chandra observatory. PoWR model atmospheres were calculated to provide realistic wind opacities and to establish the wind density structure. We find that collisional de-excitation is the dominant mechanism depopulating the metastable upper levels of the forbidden lines of the He-like ions Si XIV and Mg XII. Comparison between the model and observations reveals that X-ray emission is produced in a dense plasma, which could reside only at the photosphere or in a colliding wind zone between binary components. The observed X-ray spectra are well-fitted by thermal plasma models, with average temperatures in excess of 10 MK. The wind speed in Cyg OB2 12 is not high enough to power such high temperatures, but the collision of two winds in a binary system can be sufficient. We used archival data to investigate the X-ray properties of other blue hypergiants. In general, stars of this class are not detected as X-ray sources. We suggest that our new Chandra observations of Cyg OB2 12 can be best explained if Cyg OB2 12 is a colliding wind binary possessing a late O-type companion. This makes Cyg OB2 12 only the second binary system among the 16 known Galactic hypergiants. This low binary fraction indicates that the blue hypergiants are likely products of massive binary evolution during which they either accreted a significant amount of mass or already merged with their companions.}, language = {en} } @article{RamachandranHainichHamannetal.2017, author = {Ramachandran, Varsha and Hainich, Rainer and Hamann, Wolf-Rainer and Oskinova, Lida and Shenar, T. and Sander, Andreas Alexander Christoph and Todt, Helge Tobias and Gallagher, John S.}, title = {Stellar population of the superbubble N206 in the LMC I. Analysis of the Of-type stars}, series = {Astronomy and astrophysics : an international weekly journal}, volume = {609}, journal = {Astronomy and astrophysics : an international weekly journal}, publisher = {EDP Sciences}, address = {Les Ulis}, issn = {1432-0746}, doi = {10.1051/0004-6361/201731093}, pages = {26}, year = {2017}, abstract = {Context. Massive stars severely influence their environment by their strong ionizing radiation and by the momentum and kinetic energy input provided by their stellar winds and supernovae. Quantitative analyses of massive stars are required to understand how their feedback creates and shapes large scale structures of the interstellar medium. The giant H II region N206 in the Large Magellanic Cloud contains an OB association that powers a superbubble filled with hot X-ray emitting gas, serving as an ideal laboratory in this context. Aims. We aim to estimate stellar and wind parameters of all OB stars in N206 by means of quantitative spectroscopic analyses. In this first paper, we focus on the nine Of-type stars located in this region. We determine their ionizing flux and wind mechanical energy. The analysis of nitrogen abundances in our sample probes rotational mixing. Methods. We obtained optical spectra with the multi-object spectrograph FLAMES at the ESO-VLT. When possible, the optical spectroscopy was complemented by UV spectra from the HST, IUE, and FUSE archives. Detailed spectral classifications are presented for our sample Of-type stars. For the quantitative spectroscopic analysis we used the Potsdam Wolf-Rayet model atmosphere code. We determined the physical parameters and nitrogen abundances of our sample stars by fitting synthetic spectra to the observations. Results. The stellar and wind parameters of nine Of-type stars, which are largely derived from spectral analysis are used to construct wind momentum luminosity relationship. We find that our sample follows a relation close to the theoretical prediction, assuming clumped winds. The most massive star in the N206 association is an Of supergiant that has a very high mass-loss rate. Two objects in our sample reveal composite spectra, showing that the Of primaries have companions of late O subtype. All stars in our sample have an evolutionary age of less than 4 million yr, with the O2-type star being the youngest. All these stars show a systematic discrepancy between evolutionary and spectroscopic masses. All stars in our sample are nitrogen enriched. Nitrogen enrichment shows a clear correlation with increasing projected rotational velocities. Conclusions. The mechanical energy input from the Of stars alone is comparable to the energy stored in the N206 superbubble as measured from the observed X-ray and H alpha emission.}, language = {en} } @article{ShenarOskinovaJaervinenetal.2017, author = {Shenar, Tomer and Oskinova, Lida and Jaervinen, S. P. and Luckas, P. and Hainich, Rainer and Todt, Helge Tobias and Hubrig, Swetlana and Sander, Andreas Alexander Christoph and Ilyin, Ilya and Hamann, Wolf-Rainer}, title = {Constraining the weak-wind problem}, series = {Contributions Of The Astronomical Observatory Skalnate Pleso}, volume = {48}, journal = {Contributions Of The Astronomical Observatory Skalnate Pleso}, number = {1}, publisher = {Astronomick{\´y} {\´U}stav SAV}, address = {Tatransk{\´a} Lomnica}, issn = {1335-1842}, doi = {10.1051/0004-6361/201731291}, pages = {139 -- 143}, year = {2017}, abstract = {Mass-loss rates of massive, late type main sequence stars are much weaker than currently predicted, but their true values are very difficult to measure. We suggest that confined stellar winds of magnetic stars can be exploited to constrain the true mass-loss rates M of massive main sequence stars. We acquired UV, X-ray, and optical amateur data of HD 54879 (09.7 V), one of a few O-type stars with a detected atmospheric magnetic field (B-d greater than or similar to 2 kG). We analyze these data with the Potsdam Wolf-Rayet (PoWR) and XSPEC codes. We can roughly estimate the mass-loss rate the star would have in the absence of a magnetic field as log M-B=0 approximate to -9.0 M-circle dot yr(-1). Since the wind is partially trapped within the Alfven radius rA greater than or similar to 12 R-*,, the true mass-loss rate of HD 54879 is log M less than or similar to -10.2 M-circle dot yr(-1). Moreover, we find that the microturbulent, macroturbulent, and projected rotational velocities are lower than previously suggested (< 4 km s(-1)). An initial mass of 16 M-circle dot and an age of 5 Myr are inferred. We derive a mean X-ray emitting temperature of log T-x = 6.7 K and an X-ray luminosity of log L-x = 32 erg s(-1). The latter implies a significant X-ray excess (log L-x/L-Bol approximate to - 6.0), most likely stemming from collisions at the magnetic equator. A tentative period of P approximate to 5 yr is derived from variability of the Ha line. Our study confirms that strongly magnetized stars lose little or no mass, and supplies important constraints on the weak-wind problem of massive main sequence stars.}, language = {en} } @article{ToalaOskinovaIgnace2017, author = {Toala, Jes{\´u}s Alberto and Oskinova, Lida and Ignace, R.}, title = {On the Absence of Non-thermal X-Ray Emission around Runaway O Stars}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics ; Part 2, Letters}, volume = {838}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics ; Part 2, Letters}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {2041-8205}, doi = {10.3847/2041-8213/aa667c}, pages = {1 -- 32}, year = {2017}, abstract = {Theoretical models predict that the compressed interstellar medium around runaway O stars can produce highenergy non-thermal diffuse emission, in particular, non-thermal X-ray and gamma-ray emission. So far, detection of nonthermal X-ray emission was claimed for only one runaway star, AE Aur. We present a search for non-thermal diffuse X-ray emission from bow shocks using archived XMM-Newton observations for a clean sample of six welldetermined runaway O stars. We find that none of these objects present diffuse X-ray emission associated with their bow shocks, similarly to previous X-ray studies toward. zeta ph and BD+ 43 degrees 3654. We carefully investigated multi-wavelength observations of AE Aur and could not confirm previous findings of non-thermal X-rays. We conclude that so far there is no clear evidence of non-thermal extended emission in bow shocks around runaway O stars.}, language = {en} } @article{RichardsonShenarRoyLoubieretal.2016, author = {Richardson, Noel D. and Shenar, Tomer and Roy-Loubier, Olivier and Schaefer, Gail and Moffat, Anthony F. J. and St-Louis, Nicole and Gies, Douglas R. and Farrington, Chris and Hill, Grant M. and Williams, Peredur M. and Gordon, Kathryn and Pablo, Herbert and Ramiaramanantsoa, Tahina}, title = {The CHARA Array resolves the long-period Wolf-Rayet binaries WR 137 and WR 138}, series = {Monthly notices of the Royal Astronomical Society}, volume = {461}, journal = {Monthly notices of the Royal Astronomical Society}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0035-8711}, doi = {10.1093/mnras/stw1585}, pages = {4115 -- 4124}, year = {2016}, abstract = {We report on interferometric observations with the CHARAArray of two classical Wolf-Rayet (WR) stars in suspected binary systems, namely WR 137 and WR 138. In both cases, we resolve the component stars to be separated by a few milliarcseconds. The data were collected in the H band, and provide a measure of the fractional flux for both stars in each system. We find that the WR star is the dominant H-band light source in both systems (fWR, 137 = 0.59 +/- 0.04; fWR, 138 = 0.67 +/- 0.01), which is confirmed through both comparisons with estimated fundamental parameters for WR stars and O dwarfs, as well as through spectral modelling of each system. Our spectral modelling also provides fundamental parameters for the stars and winds in these systems. The results on WR 138 provide evidence that it is a binary system which may have gone through a previous mass-transfer episode to create the WR star. The separation and position of the stars in the WR 137 system together with previous results from the IOTA interferometer provides evidence that the binary is seen nearly edgeon. The possible edge-on orbit of WR 137 aligns well with the dust production site imaged by the Hubble Space Telescope during a previous periastron passage, showing that the dust production may be concentrated in the orbital plane.}, language = {en} } @article{CorcoranNicholsPabloetal.2015, author = {Corcoran, Michael F. and Nichols, Joy S. and Pablo, Herbert and Shenar, Tomer and Pollock, Andy M. T. and Waldron, Wayne L. and Moffat, Anthony F. J. and Richardson, Noel D. and Russell, Christopher M. P. and Hamaguchi, Kenji and Huenemoerder, David P. and Oskinova, Lida and Hamann, Wolf-Rainer and Naze, Yael and Ignace, Richard and Evans, Nancy Remage and Lomax, Jamie R. and Hoffman, Jennifer L. and Gayley, Kenneth and Owocki, Stanley P. and Leutenegger, Maurice and Gull, Theodore R. and Hole, Karen Tabetha and Lauer, Jennifer and Iping, Rosina C.}, title = {A coordinated X-Ray and optical campaign of the nearest massive eclipsing binary, delta ORIONIS Aa. I. Overview of thr X-Ray spectrum}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, volume = {809}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, number = {2}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {0004-637X}, doi = {10.1088/0004-637X/809/2/132}, pages = {15}, year = {2015}, abstract = {We present an overview of four deep phase-constrained Chandra HETGS X-ray observations of delta Ori A. Delta Ori A is actually a triple system that includes the nearest massive eclipsing spectroscopic binary, delta Ori Aa, the only such object that can be observed with little phase-smearing with the Chandra gratings. Since the fainter star, delta Ori Aa2, has a much lower X-ray luminosity than the brighter primary (delta Ori Aa1), delta Ori Aa provides a unique system with which to test the spatial distribution of the X-ray emitting gas around delta Ori Aa1 via occultation by the photosphere of, and wind cavity around, the X-ray dark secondary. Here we discuss the X-ray spectrum and X-ray line profiles for the combined observation, having an exposure time of nearly 500 ks and covering nearly the entire binary orbit. The companion papers discuss the X-ray variability seen in the Chandra spectra, present new space-based photometry and ground-based radial velocities obtained simultaneously with the X-ray data to better constrain the system parameters, and model the effects of X-rays on the optical and UV spectra. We find that the X-ray emission is dominated by embedded wind shock emission from star Aa1, with little contribution from the tertiary star Ab or the shocked gas produced by the collision of the wind of Aa1 against the surface of Aa2. We find a similar temperature distribution to previous X-ray spectrum analyses. We also show that the line half-widths are about 0.3-0.5 times the terminal velocity of the wind of star Aa1. We find a strong anti-correlation between line widths and the line excitation energy, which suggests that longer-wavelength, lower-temperature lines form farther out in the wind. Our analysis also indicates that the ratio of the intensities of the strong and weak lines of Fe XVII and Ne X are inconsistent with model predictions, which may be an effect of resonance scattering.}, language = {en} } @article{HainichPasemannTodtetal.2015, author = {Hainich, Rainer and Pasemann, Diana and Todt, Helge Tobias and Shenar, Tomer and Sander, Andreas Alexander Christoph and Hamann, Wolf-Rainer}, title = {Wolf-Rayet stars in the Small Magellanic Cloud I. Analysis of the single WN stars}, series = {Astronomy and astrophysics : an international weekly journal}, volume = {581}, journal = {Astronomy and astrophysics : an international weekly journal}, publisher = {EDP Sciences}, address = {Les Ulis}, issn = {1432-0746}, doi = {10.1051/0004-6361/201526241}, pages = {30}, year = {2015}, abstract = {Context. Wolf-Rayet (WR) stars have a severe impact on their environments owing to their strong ionizing radiation fields and powerful stellar winds. Since these winds are considered to be driven by radiation pressure, it is theoretically expected that the degree of the wind mass-loss depends on the initial metallicity of WR stars. Aims. Following our comprehensive studies of WR stars in the Milky Way, M31, and the LMC, we derive stellar parameters and mass-loss rates for all seven putatively single WN stars known in the SMC. Based on these data, we discuss the impact of a low-metallicity environment on the mass loss and evolution of WR stars. Methods. The quantitative analysis of the WN stars is performed with the Potsdam Wolf-Rayet (PoWR) model atmosphere code. The physical properties of our program stars are obtained from fitting synthetic spectra to multi-band observations. Results. In all SMC WN stars, a considerable surface hydrogen abundance is detectable. The majority of these objects have stellar temperatures exceeding 75 kK, while their luminosities range from 10(5.5) to 10(6.1) L-circle dot. The WN stars in the SMC exhibit on average lower mass-loss rates and weaker winds than their counterparts in the Milky Way, M31, and the LMC. Conclusions. By comparing the mass-loss rates derived for WN stars in different Local Group galaxies, we conclude that a clear dependence of the wind mass-loss on the initial metallicity is evident, supporting the current paradigm that WR winds are driven by radiation. A metallicity effect on the evolution of massive stars is obvious from the HRD positions of the SMC WN stars at high temperatures and high luminosities. Standard evolution tracks are not able to reproduce these parameters and the observed surface hydrogen abundances. Homogeneous evolution might provide a better explanation for their evolutionary past.}, language = {en} }