@article{MehnertBrunettiSteinbrinketal.2013, author = {Mehnert, Jan and Brunetti, Maddalena and Steinbrink, Jens and Niedeggen, Michael and Dohle, Christian}, title = {Effect of a mirror-like illusion on activation in the precuneus assessed with functional near-infrared spectroscopy}, series = {Journal of biomedical optics}, volume = {18}, journal = {Journal of biomedical optics}, number = {6}, publisher = {SPIE}, address = {Bellingham}, issn = {1083-3668}, doi = {10.1117/1.JBO.18.6.066001}, pages = {9}, year = {2013}, abstract = {Mirror therapy is a therapy to treat patients with pain syndromes or hemiparesis after stroke. However, the underlying neurophysiologic mechanisms are not clearly understood. In order to determine the effect of a mirror-like illusion (MIR) on brain activity using functional near-infrared spectroscopy, 20 healthy right-handed subjects were examined. A MIR was induced by a digital horizontal inversion of the subjects' filmed hand. Optodes were placed on the primary motor cortex (M1) and the occipito-parietal cortex (precuneus, PC). Regions of interest (ROI) were defined a priori based on previous results of similar studies and confirmed by the analysis of effect sizes. Analysis of variance of the ROI signal revealed a dissociated pattern: at the PC, the MIR caused a significant inversion of a hemispheric lateralization opposite to the perceived hand, independent of the moving hand. In contrast, activity in M1 showed lateralization opposite to the moving hand, but revealed no mirror effect. These findings extend our understanding on interhemispheric rivalry and indicate that a MIR is integrated into visuomotor coordination similar to normal view, irrespective of the hand that is actually performing the task. (C) 2013 Society of Photo-Optical Instrumentation Engineers (SPIE)}, language = {en} } @article{HauserWodtkeTonderaetal.2019, author = {Hauser, Sandra and Wodtke, Robert and Tondera, Christoph and Wodtke, Johanna and Neffe, Axel T. and Hampe, Jochen and Lendlein, Andreas and L{\"o}ser, Reik and Pietzsch, Jens}, title = {Characterization of Tissue Transglutaminase as a Potential Biomarker for Tissue Response toward Biomaterials}, series = {ACS biomaterials science \& engineering}, volume = {5}, journal = {ACS biomaterials science \& engineering}, number = {11}, publisher = {American Chemical Society}, address = {Washington}, issn = {2373-9878}, doi = {10.1021/acsbiomaterials.9b01299}, pages = {5979 -- 5989}, year = {2019}, abstract = {Tissue transglutaminase (TGase 2) is proposed to be important for biomaterial-tissue interactions due to its presence and versatile functions in the extracellular environment. TGase 2 catalyzes the cross-linking of proteins through its Ca2+-dependent acyltransferase activity. Moreover, it enhances the interactions between fibronectin and integrins, which in turn mediates the adhesion, migration, and motility of the cells. TGase 2 is also a key player in the pathogenesis of fibrosis. In this study, we investigated whether TGase 2 is present at the biomaterial tissue interface and might serve as an informative biomarker for the visualization of tissue response toward gelatin-based biomaterials. Two differently cross-linked hydrogels were used, which were obtained by the reaction of gelatin with lysine diisocyanate ethyl ester. The overall expression of TGase 2 by endothelial cells, macrophages, and granulocytes was partly influenced by contact to the hydrogels or their degradation products, although no clear correlation was evidenced. In contrast, the secretion of TGase 2 differed remarkably between the different cells, indicating that it might be involved in the cellular reaction toward gelatin-based hydrogels. The hydrogels were implanted subcutaneously in immunocompetent, hairless SKH1-Elite mice. Ex vivo immunohistochemical analysis of tissue sections over 112 days revealed enhanced expression of TGase 2 around the hydrogels, in particular at days 14 and 21 post-implantation. The incorporation of fluorescently labeled cadaverine derivatives for the detection of active TGase 2 was in accordance with the results of the expression analysis. The presence of an irreversible inhibitor of TGase 2 led to attenuated incorporation of the cadaverines, which verified the catalytic action of TGase 2. Our in vitro and ex vivo results verified TGase 2 as a potential biomarker for tissue response toward gelatin-based hydrogels. In vivo, no TGase 2 activity was detectable, which is mainly attributed to the unfavorable physicochemical properties of the cadaverine probe used.}, language = {en} }