@article{FernandezCabezaMishurovaetal.2018, author = {Fernandez, R. and Cabeza, Sandra and Mishurova, Tatiana and Fernandez-Castrillo, P. and Gonzalez-Doncel, Gaspar and Bruno, Giovanni}, title = {Residual stress and yield strength evolution with annealing treatments in an age-hardenable aluminum alloy matrix composite}, series = {Materials Science and Engineering: A}, volume = {731}, journal = {Materials Science and Engineering: A}, publisher = {Elsevier}, address = {Lausanne}, issn = {0921-5093}, doi = {10.1016/j.msea.2018.06.031}, pages = {344 -- 350}, year = {2018}, abstract = {We investigated the possibility of minimizing tensile matrix residual stresses in age hardenable aluminum alloy metal matrix composites without detrimentally affect their mechanical properties (such as yield strength). Specifically, we performed thermal treatments at different temperatures and times in an age-hardenable aluminum matrix composite 2014Al-15vol\%Al2O3. Using X-ray synchrotron radiation diffraction and mechanical tests, we show that below a certain treatment temperature (250 degrees C) it is possible to identify an appropriate thermal treatment capable of relaxing residual stress in this composite while even increasing its yield strength, with respect to the as processed conditions.}, language = {en} }