@article{WeyrichJeschekSchrapersetal.2018, author = {Weyrich, Alexandra and Jeschek, Marie and Schrapers, Katharina T. and Lenz, Dorina and Chung, Tzu Hung and Ruebensam, Kathrin and Yasar, Sermin and Schneemann, Markus and Ortmann, Sylvia and Jewgenow, Katarina and Fickel, J{\"o}rns}, title = {Diet changes alter paternally inherited epigenetic pattern in male Wild guinea pigs}, series = {Environmental Epigenetics}, volume = {4}, journal = {Environmental Epigenetics}, number = {2}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {2058-5888}, doi = {10.1093/eep/dvy011}, pages = {12}, year = {2018}, abstract = {Epigenetic modifications, of which DNA methylation is the most stable, are a mechanism conveying environmental information to subsequent generations via parental germ lines. The paternal contribution to adaptive processes in the offspring might be crucial, but has been widely neglected in comparison to the maternal one. To address the paternal impact on the offspring's adaptability to changes in diet composition, we investigated if low protein diet (LPD) in F0 males caused epigenetic alterations in their subsequently sired sons. We therefore fed F0 male Wild guinea pigs with a diet lowered in protein content (LPD) and investigated DNA methylation in sons sired before and after their father's LPD treatment in both, liver and testis tissues. Our results point to a 'heritable epigenetic response' of the sons to the fathers' dietary change. Because we detected methylation changes also in the testis tissue, they are likely to be transmitted to the F2 generation. Gene-network analyses of differentially methylated genes in liver identified main metabolic pathways indicating a metabolic reprogramming ('metabolic shift'). Epigenetic mechanisms, allowing an immediate and inherited adaptation may thus be important for the survival of species in the context of a persistently changing environment, such as climate change.}, language = {en} } @article{WeyrichLenzFickel2018, author = {Weyrich, Alexandra and Lenz, Dorina and Fickel, J{\"o}rns}, title = {Environmental Change-Dependent Inherited Epigenetic Response}, series = {GENES}, volume = {10}, journal = {GENES}, number = {1}, publisher = {MDPI}, address = {Basel}, issn = {2073-4425}, doi = {10.3390/genes10010004}, pages = {15}, year = {2018}, abstract = {Epigenetic modifications are a mechanism conveying environmental information to subsequent generations via parental germ lines. Research on epigenetic responses to environmental changes in wild mammals has been widely neglected, as well as studies that compare responses to changes in different environmental factors. Here, we focused on the transmission of DNA methylation changes to naive male offspring after paternal exposure to either diet (~40\% less protein) or temperature increase (10 °C increased temperature). Because both experiments focused on the liver as the main metabolic and thermoregulation organ, we were able to decipher if epigenetic changes differed in response to different environmental changes. Reduced representation bisulfite sequencing (RRBS) revealed differentially methylated regions (DMRs) in annotated genomic regions in sons sired before (control) and after the fathers' treatments. We detected both a highly specific epigenetic response dependent on the environmental factor that had changed that was reflected in genes involved in specific metabolic pathways, and a more general response to changes in outer stimuli reflected by epigenetic modifications in a small subset of genes shared between both responses. Our results indicated that fathers prepared their offspring for specific environmental changes by paternally inherited epigenetic modifications, suggesting a strong paternal contribution to adaptive processes.}, language = {en} } @article{WeyrichLenzJescheketal.2016, author = {Weyrich, Alexandra and Lenz, Dorina and Jeschek, Marie and Tzu Hung Chung, and Ruebensam, Kathrin and Goeritz, Frank and Jewgenow, Katarina and Fickel, J{\"o}rns}, title = {Paternal intergenerational epigenetic response to heat exposure in male Wild guinea pigs}, series = {Molecular ecology}, volume = {25}, journal = {Molecular ecology}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {0962-1083}, doi = {10.1111/mec.13494}, pages = {1729 -- 1740}, year = {2016}, abstract = {Epigenetic modifications, of which DNA methylation is the best studied one, can convey environmental information through generations via parental germ lines. Past studies have focused on the maternal transmission of epigenetic information to the offspring of isogenic mice and rats in response to external changes, whereas heterogeneous wild mammals as well as paternal epigenetic effects have been widely neglected. In most wild mammal species, males are the dispersing sex and have to cope with differing habitats and thermal changes. As temperature is a major environmental factor we investigated if genetically heterogeneous Wild guinea pig (Cavia aperea) males can adapt epigenetically to an increase in temperature and if that response will be transmitted to the next generation(s). Five adult male guinea pigs (F0) were exposed to an increased ambient temperature for 2 months, i.e. the duration of spermatogenesis. We studied the liver (as the main thermoregulatory organ) of F0 fathers and F1 sons, and testes of F1 sons for paternal transmission of epigenetic modifications across generation(s). Reduced representation bisulphite sequencing revealed shared differentially methylated regions in annotated areas between F0 livers before and after heat treatment, and their sons' livers and testes, which indicated a general response with ecological relevance. Thus, paternal exposure to a temporally limited increased ambient temperature led to an 'immediate' and 'heritable' epigenetic response that may even be transmitted to the F2 generation. In the context of globally rising temperatures epigenetic mechanisms may become increasingly relevant for the survival of species.}, language = {en} }