@article{TsuprykovChaykovskaKretschmeretal.2015, author = {Tsuprykov, Oleg and Chaykovska, Lyubov and Kretschmer, Axel and Stasch, Johannes-Peter and Pfab, Thiemo and Krause-Relle, Katharina and Reichetzeder, Christoph and Kalk, Philipp and Adamski, Jerzy and Hocher, Berthold}, title = {Endothelin-1 overexpression improves renal function in eNOS knockout mice}, series = {Cellular physiology and biochemistry : international journal of experimental cellular physiology, biochemistry and pharmacology}, volume = {37}, journal = {Cellular physiology and biochemistry : international journal of experimental cellular physiology, biochemistry and pharmacology}, number = {4}, publisher = {Karger}, address = {Basel}, issn = {1015-8987}, doi = {10.1159/000438516}, pages = {1474 -- 1490}, year = {2015}, abstract = {Background/Aims: To investigate the renal phenotype under conditions of an activated renal ET-1 system in the status of nitric oxide deficiency, we compared kidney function and morphology in wild-type, ET-1 transgenic (ET+/+), endothelial nitric oxide synthase knockout (eNOS-/-) and ET+/+eNOS-/- mice. Methods: We assessed blood pressure, parameters of renal morphology, plasma cystatin C, urinary protein excretion, expression of genes associated with glomerular filtration barrier and tissue remodeling, and plasma metabolites using metabolomics. Results: eNOS-/- and ET+/+eNOS-/- mice developed hypertension. Osteopontin, albumin and protein excretion were increased in eNOS-/- and restored in ET+/+eNOS-/- animals. All genetically modified mice developed renal interstitial fibrosis and glomerulosclerosis. Genes involved in tissue remodeling (serpinel, TIMP1, Collal, CCL2) were up-regulated in eNOS-/-, but not in ET+/+eNOS-/- mice. Plasma levels of free carnitine and acylcarnitines, amino acids, diacyl phosphatidylcholines, lysophosphatidylcholines and hexoses were descreased in eNOS-/- and were in the normal range in ET+/+eNOS-/- mice. Conclusion: eNOS-/- mice developed renal dysfunction, which was partially rescued by ET-1 overexpression in eNOS-/- mice. The metabolomics results suggest that ET-1 overexpression on top of eNOS knockout is associated with a functional recovery of mitochondria (rescue effect in 13-oxidation of fatty acids) and an increase in antioxidative properties (normalization of monounsaturated fatty acids levels). (C) 2015 The Author(s) Published by S. Karger AG, Basel}, language = {en} } @article{SchmitzPotteckSchueppeletal.2012, author = {Schmitz, Elisabeth I. and Potteck, Henrik and Sch{\"u}ppel, Melanie and Manggau, Marianti and Wahydin, Elly and Kleuser, Burkhard}, title = {Sphingosine 1-phosphate protects primary human keratinocytes from apoptosis via nitric oxide formation through the receptor subtype S1P(3)}, series = {Molecular and cellular biochemistry : an international journal for chemical biology in health and disease}, volume = {371}, journal = {Molecular and cellular biochemistry : an international journal for chemical biology in health and disease}, number = {1-2}, publisher = {Springer}, address = {Dordrecht}, issn = {0300-8177}, doi = {10.1007/s11010-012-1433-5}, pages = {165 -- 176}, year = {2012}, abstract = {Although the lipid mediator sphingosine 1-phosphate (S1P) has been identified to induce cell growth arrest of human keratinocytes, the sphingolipid effectively protects these epidermal cells from apoptosis. The molecular mechanism of the anti-apoptotic action induced by S1P is less characterized. Apart from S1P, endogenously produced nitric oxide (NOaEuro cent) has been recognized as a potent modulator of apoptosis in keratinocytes. Therefore, it was of great interest to elucidate whether S1P protects human keratinocytes via a NOaEuro cent-dependent signalling pathway. Indeed, S1P induced an activation of endothelial nitric oxide synthase (eNOS) in human keratinocytes leading to an enhanced formation of NOaEuro cent. Most interestingly, the cell protective effect of S1P was almost completely abolished in the presence of the eNOS inhibitor L-NAME as well as in eNOS-deficient keratinocytes indicating that the sphingolipid metabolite S1P protects human keratinocytes from apoptosis via eNOS activation and subsequent production of protective amounts of NOaEuro cent. It is well established that most of the known actions of S1P are mediated by a family of five specific G protein-coupled receptors. Therefore, the involvement of S1P-receptor subtypes in S1P-mediated eNOS activation has been examined. Indeed, this study clearly shows that the S1P(3) is the exclusive receptor subtype in human keratinocytes which mediates eNOS activation and NOaEuro cent formation in response to S1P. In congruence, when the S1P(3) receptor subtype is abrogated, S1P almost completely lost its ability to protect human keratinocytes from apoptosis.}, language = {en} }