@article{WangLiuMischkeetal.2012, author = {Wang, Yongbo and Liu, Xingqi and Mischke, Steffen and Herzschuh, Ulrike}, title = {Environmental constraints on lake sediment mineral compositions from the Tibetan Plateau and implications for paleoenvironment reconstruction}, series = {Journal of paleolimnolog}, volume = {47}, journal = {Journal of paleolimnolog}, number = {1}, publisher = {Springer}, address = {Dordrecht}, issn = {0921-2728}, doi = {10.1007/s10933-011-9549-2}, pages = {71 -- 85}, year = {2012}, abstract = {Inorganic minerals form a major component of lacustrine sediments and have the potential to reveal detailed information on previous climatic and hydrological conditions. The ability to extract such information however, has been restricted by a limited understanding of the relationships between minerals and the environment. In an attempt to fill in this gap in our knowledge, 146 surface sediment samples have been investigated from 146 lakes on the Tibetan Plateau. The mineral compositions derived from these samples by X-Ray Diffraction (XRD) were used to examine the relationships between mineral compositions and the environmental variables determined for each site. Statistical techniques including Multivariate regression trees (MRT) and Redundancy Analysis (RDA), based on the mineral spectra and environmental variables, reveal that the electrical conductivity (EC) and Mg/Ca ratios of lake water are the most important controls on the composition of endogenic minerals. No endogenic minerals precipitate under hyper-fresh water conditions (EC lower than 0.13 mS/cm), with calcite commonly forming in water with EC values above 0.13 mS/cm. Between EC values of 0.13 and 26 mS/cm the mineral composition of lake sediments can be explained in terms of variations in the Mg/Ca ratio: calcite dominates at Mg/Ca ratios of less than 33, whereas aragonite commonly forms when the ratio is greater than 33. Where EC values are between 26 and 39 mS/cm, monohydrocalcite precipitates together with calcite and aragonite; above 39 mS/cm, gypsum and halite commonly form. Information on the local geological strata indicates that allogenic (detrital) mineral compositions are primarily influenced by the bedrock compositions within the catchment area. By applying these relationships to the late glacial and Holocene mineral record from Chaka Salt Lake, five lake stages have been identified and their associated EC conditions inferred. The lake evolved from a freshwater lake during the late glacial (before 11.4 cal. ka BP) represented by the lowest EC values (< 0.13 mS/cm), to a saline lake with EC values slightly higher than 39 mS/cm during the early and mid Holocene (ca. 11.4-5.3 cal. ka BP), and finally to a salt lake (after 5.3 cal. ka BP). These results illustrate the utility of our mineral-environmental model for the quantitative reconstruction of past environmental conditions from lake sediment records.}, language = {en} } @article{WalterLueckBauriegeletal.2018, author = {Walter, Judith and L{\"u}ck, Erika and Bauriegel, Albrecht and Facklam, Michael and Zeitz, Jutta}, title = {Seasonal dynamics of soil salinity in peatlands}, series = {Geoderma : an international journal of soil science}, volume = {310}, journal = {Geoderma : an international journal of soil science}, publisher = {Elsevier Science}, address = {Amsterdam}, issn = {0016-7061}, doi = {10.1016/j.geoderma.2017.08.022}, pages = {1 -- 11}, year = {2018}, abstract = {Inland salt meadows are particularly valuable ecosystems, because they support a variety of salt-adapted species (halophytes). They can be found throughout Europe; including the peatlands of the glacial lowlands in northeast Germany. These German ecosystems have been seriously damaged through drainage. To assess and ultimately limit the damages, temporal monitoring of soil salinity is essential, which can be conducted by geoelectrical techniques that measure the soil electrical conductivity. However, there is limited knowledge on how to interpret electrical conductivity surveys of peaty salt meadows. In this study, temporal and spatial monitoring of dissolved salts was conducted in saline peatland soils using different geoelectrical techniques at different scales (1D: conductivity probe, 2D: conductivity cross-sections). Cores and soil samples were taken to validate the geoelectrical surveys. Although the influence of peat on bulk conductivity is large, the seasonal dynamics of dissolved salts within the soil profile could be monitored by repeated geoelectrical measurements. A close correlation is observed between conductivity (similar to salinity) at different depths and temperature, precipitation and corresponding groundwater level. The conductivity distribution between top- and subsoil during the growing season reflected the leaching of dissolved salts by precipitation and the capillary rise of dissolved salts by increasing temperature (similar to evaporation). Groundwater levels below 0.38 cm resulted in very low conductivities in the topsoil, which is presumably due to limited soil moisture and thus precipitation of salts. Therefore, to prevent the disappearance of dissolved salts from the rooting zone, which are essential for the halophytes, groundwater levels should be adjusted to maintain depths of between 20 and 35 cm. Lower groundwater levels will lead to the loss of dissolved salts from the rooting zone and higher levels to increasing dilution with fresh rainwater. The easy-to-handle conductivity probe is an appropriate tool for salinity monitoring. Using this probe with regressions adjusted for sandy and organic substrates (peat and organic gyttja) additional influences on bulk conductivity (e.g. cation exchange capacity, water content) can be compensated for and the correlation between salinity and electrical conductivity is high.}, language = {en} } @article{WalterLueckHelleretal.2019, author = {Walter, J. and L{\"u}ck, Erika and Heller, C. and Bauriegel, Albrecht and Zeitz, Jutta}, title = {Relationship between electrical conductivity and water content of peat and gyttja}, series = {Near surface geophysics}, volume = {17}, journal = {Near surface geophysics}, number = {2}, publisher = {Wiley}, address = {Hoboken}, issn = {1569-4445}, doi = {10.1002/nsg.12030}, pages = {169 -- 179}, year = {2019}, abstract = {The application of electrical resistivity tomography to peatlands supports conventional coring by providing data on the current condition of peatlands, including data on stratigraphy, peat properties and thickness of organic deposits. Data on the current condition of drained peatlands are particularly required to improve estimates of carbon storage as well as losses and emissions from agriculturally used peatlands. However, most of the studies focusing on electrical resistivity tomography surveys have been conducted on natural peatlands with higher groundwater levels. Peatlands drained for agriculture have not often been studied using geophysical techniques. Drained sites are characterized by low groundwater levels and high groundwater fluctuations during the year, which lead to varying levels of water saturation. To validate better electrical resistivity tomography surveys of drained peatlands, the aim of this laboratory study is to investigate the influence of varying water saturation levels on electrical conductivity (reciprocal of resistivity) for a variety of peat and gyttja types, as well as for different degrees of peat decomposition. Results show that different levels of water saturation strongly influence bulk electrical conductivity. Distinct differences in this relationship exist between peat and gyttja substrates and between different degrees of peat decomposition. Peat shows an exponential relationship for all degrees of decomposition, whereas gyttja, in particular organic-rich gyttja, is characterized by a rather unimodal relationship. The slopes for the relationship between electrical conductivity and water content are steeper at high degrees of decomposition than for peat of low degrees of decomposition. These results have direct implications for field electrical resistivity tomography surveys. In drained peatlands that are strongly susceptible to drying, electrical resistivity tomography surveys have a high potential to monitor the actual field water content. In addition, at comparable water saturations, high or low degrees of decomposition can be inferred from electrical conductivity.}, language = {en} } @article{WalterHamannLuecketal.2016, author = {Walter, J. and Hamann, G{\"o}ran and L{\"u}ck, Erika and Klingenfuss, C. and Zeitz, Jutta}, title = {Stratigraphy and soil properties of fens: Geophysical case studies from northeastern Germany}, series = {Catena : an interdisciplinary journal of soil science, hydrology, geomorphology focusing on geoecology and landscape evolution}, volume = {142}, journal = {Catena : an interdisciplinary journal of soil science, hydrology, geomorphology focusing on geoecology and landscape evolution}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0341-8162}, doi = {10.1016/j.catena.2016.02.028}, pages = {112 -- 125}, year = {2016}, abstract = {The determination of the total carbon storage of peatlands is of high relevance in the context of climate-change mitigation efforts. This determination relies on data about stratigraphy and peat properties, which are conventionally collected by coring. Ground-penetrating radar (GPR) and electrical resistivity imaging (ERI) can support these point data by providing subsoil information in two-dimensional cross-sections. In this study, GPR and ERI were conducted at two groundwater-fed fen sites located in the temperate zone in north-east Germany. The fens of this region are embedded in low conductive glacial sand and are characterised by thick layers of gyttja, which can be either mineral or organic. The two study sites are representative of this region with respect to stratigraphy (total thickness, peat and gyttja types) and ecological conditions (pH-value, trophic condition). The aim of this study is to assess the suitability of GPR and ERI to detect stratigraphy and peat properties under these characteristic site conditions. Results show that GPR clearly detects the interfaces between (i) Carex and brown-moss peat, (ii) brown-moss peat and organic gyttja, (iii) organic- and mineral gyttja, and (iv) mineral gyttja and the parent material (glacial sand). These layers differ in bulk density and the related organic matter content. ERI, however, does not delineate these layers; rather it delineates regions of varying properties. At our base-rich site, pore fluid conductivity and cation.exchange capacity are the main factors that determine peat electrical conductivity (reverse of resistivity), whereas organic matter and water content are most influential at the more acidic site. Thus the correlation between peat properties and electrical conductivity are driven by site-specific conditions, which are mainly determined by the solute load in the groundwater at fens. When the total organic deposits exceed a thickness of 5 m, the depth of investigation by GPR is limited due to increasing attenuation. This is not a limiting factor for ERI, where the transition from organic deposits to glacial sand is visible at both sites. Due to these specific sensitivities, a combined application of GPR and ERI meets the demand for up-to-date information on carbon storage of peatlands, which is, moreover, very site-specific because of the inherent variety of ecological conditions and stratigraphy between peatlands in general and between fens and bogs in particular. (C) 2016 Elsevier B.V. All rights reserved.}, language = {en} } @article{LueckRuehlmann2013, author = {L{\"u}ck, Erika and R{\"u}hlmann, J{\"o}rg}, title = {Resistivity mapping with GEOPHILUS ELECTRICUS - Information about lateral and vertical soil heterogeneity}, series = {Geoderma : an international journal of soil science}, volume = {199}, journal = {Geoderma : an international journal of soil science}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0016-7061}, doi = {10.1016/j.geoderma.2012.11.009}, pages = {2 -- 11}, year = {2013}, abstract = {GEOPHILUS ELECTRICUS (nickname GEOPHILUS) is a novel system for mapping the complex electrical bulk resistivity of soils. Rolling electrodes simultaneously measure amplitude and phase data at frequencies ranging from 1 mHz to 1 kHz. The sensor's design and technical specifications allow for measuring these parameters at five depths of up to ca. 1.5 m. Data inversion techniques can be employed to determine resistivity models instead of apparent values and to image soil layers and their geometry with depth. When used in combination with a global positioning system (GPS) and a suitable cross-country vehicle, it is possible to map about 100 ha/day (assuming 1 data point is recorded per second and the line spacing is 18 m). The applicability of the GEOPHILUS system has been demonstrated on several sites, where soils show variations in texture, stratification, and thus electrical characteristics. The data quality has been studied by comparison with 'static' electrodes, by repeated measurements, and by comparison with other mobile conductivity mapping devices (VERIS3100 and EM38). The high quality of the conductivity data produced by the GEOPHILUS system is evident and demonstrated by the overall consistency of the individual maps, and in the clear stratification also confirmed by independent data. The GEOPHILUS system measures complex values of electrical resistivity in terms of amplitude and phase. Whereas electrical conductivity data (amplitude) are well established in soil science, the interpretation of phase data is a topic of current research. Whether phase data are able to provide additional information depends on the site-specific settings. Here, we present examples, where phase data provide complementary information on man-made structures such as metal pipes and soil compaction.}, language = {en} }