@article{RaufArifDortayetal.2013, author = {Rauf, Mamoona and Arif, Muhammad and Dortay, Hakan and Matallana-Ramirez, Lilian P. and Waters, Mark T. and Nam, Hong Gil and Lim, Pyung-Ok and M{\"u}ller-R{\"o}ber, Bernd and Balazadeh, Salma}, title = {ORE1 balances leaf senescence against maintenance by antagonizing G2-like-mediated transcription}, series = {EMBO reports}, volume = {14}, journal = {EMBO reports}, number = {4}, publisher = {Nature Publ. Group}, address = {London}, issn = {1469-221X}, doi = {10.1038/embor.2013.24}, pages = {382 -- 388}, year = {2013}, abstract = {Leaf senescence is a key physiological process in all plants. Its onset is tightly controlled by transcription factors, of which NAC factor ORE1 (ANAC092) is crucial in Arabidopsis thaliana. Enhanced expression of ORE1 triggers early senescence by controlling a downstream gene network that includes various senescence-associated genes. Here, we report that unexpectedly ORE1 interacts with the G2-like transcription factors GLK1 and GLK2, which are important for chloroplast development and maintenance, and thereby for leaf maintenance. ORE1 antagonizes GLK transcriptional activity, shifting the balance from chloroplast maintenance towards deterioration. Our finding identifies a new mechanism important for the control of senescence by ORE1.}, language = {en} } @article{MuntahaLiCompartetal.2022, author = {Muntaha, Sidratul Nur and Li, Xiaoping and Compart, Julia and Apriyanto, Ardha and Fettke, J{\"o}rg}, title = {Carbon pathways during transitory starch degradation in Arabidopsis differentially affect the starch granule number and morphology in the dpe2/phs1 mutant background}, series = {Plant physiology and biochemistry : an official journal of the Federation of European Societies of Plant Physiology}, volume = {180}, journal = {Plant physiology and biochemistry : an official journal of the Federation of European Societies of Plant Physiology}, publisher = {Elsevier}, address = {Paris}, issn = {0981-9428}, doi = {10.1016/j.plaphy.2022.03.033}, pages = {35 -- 41}, year = {2022}, abstract = {The Arabidopsis knockout mutant lacking both the cytosolic disproportionating enzyme 2 (DPE2) and the plastidial phosphorylase (PHS1) had a dwarf-growth phenotype, a reduced and uneven distribution of starch within the plant rosettes, and a lower starch granule number per chloroplast under standard growth conditions. In contrast, a triple mutant impaired in starch degradation by its additional lack of the glucan, water dikinase (GWD) showed improved plant growth, a starch-excess phenotype, and a homogeneous starch distribution. Furthermore, the number of starch granules per chloroplast was increased and was similar to the wild type. We concluded that ongoing starch degradation is mainly responsible for the observed phenotype of dpe2/phs1. Next, we generated two further triple mutants lacking either the phosphoglucan, water dikinase (PWD), or the disproportionating enzyme 1 (DPE1) in the background of the double mutant. Analysis of the starch metabolism revealed that even minor ongoing starch degradation observed in dpe2/phs1/pwd maintained the double mutant phenotype. In contrast, an additional blockage in the glucose pathway of starch breakdown, as in dpe2/phs1/ dpe1, resulted in a nearly starch-free phenotype and massive chloroplast degradation. The characterized mutants were discussed in the context of starch granule formation.}, language = {en} } @phdthesis{Hoelscher2020, author = {Hoelscher, Matthijs Pieter}, title = {The production of antimicrobial polypeptides in chloroplasts}, school = {Universit{\"a}t Potsdam}, pages = {xiii, 114}, year = {2020}, abstract = {Plants are an attractive platform for the production of medicinal compounds because of their potential to generate large amounts of biomass cheaply. The use of chloroplast transformation is an attractive way to achieve the recombinant production of proteins in plants, because of the chloroplasts' high capacity to produce foreign proteins in comparison to nuclear transformed plants. In this thesis, the production of two different types of antimicrobial polypeptides in chloroplasts is explored. The first example is the production of the potent HIV entry inhibitor griffithsin. Griffithsin has the potential to prevent HIV infections by blocking the entry of the virus into human cells. Here the use of transplastomic plants as an inexpensive production method for griffithsin was explored. Transplastomic plants grew healthily and were able to accumulate griffithsin to up to 5\% of the total soluble protein. Griffithsin could easily be purified from tobacco leaf tissue and had a similarly high neutralization activity as griffithsin recombinantly produced in bacteria. Griffithsin could be purified from dried tobacco leaves, demonstrating that dried leaves could be used as a storable starting material for griffithsin purification, circumventing the need for immediate purification after harvest. The second example is the production of antimicrobial peptides (AMPs) that have the capacity to kill bacteria and are an attractive alternative to currently used antibiotics that are increasingly becoming ineffective. The production of antimicrobial peptides was considerably more challenging than the production of griffithsin. Small AMPs are prone to degradation in plastids. This problem was overcome by fusing AMPs to generate larger polypeptides. In one approach, AMPs were fused to each other to increase size and combine the mode of action of multiple AMPs. This improved the accumulation of AMPs but also resulted in impaired plant growth. This was solved by the use of two different inducible systems, which could largely restore plant growth. Fusions of multiple AMPs were insoluble and could not be purified. In addition to fusing AMPs to each other, the fusion of AMPs to small ubiquitin-like modifier (SUMO), was tested as an approach to improve the accumulation, facilitate purification, and reduce the toxicity of AMPs to chloroplasts. Fusion of AMPs to SUMO indeed increased accumulation while reducing the toxicity to the plants. SUMO fusions produced inside chloroplasts could be purified, and SUMO could be efficiently cleaved off with the SUMO protease. Such fusions therefore provide a promising strategy for the production of AMPs and other small polypeptides inside chloroplasts.}, language = {en} }