@article{BelliFelisattiFischer2021, author = {Belli, Francesco and Felisatti, Arianna and Fischer, Martin H.}, title = {"BreaThink"}, series = {Experimental brain research}, volume = {239}, journal = {Experimental brain research}, number = {8}, publisher = {Springer}, address = {New York}, issn = {0014-4819}, doi = {10.1007/s00221-021-06147-z}, pages = {2489 -- 2499}, year = {2021}, abstract = {Cognition is shaped by signals from outside and within the body. Following recent evidence of interoceptive signals modulating higher-level cognition, we examined whether breathing changes the production and perception of quantities. In Experiment 1, 22 adults verbally produced on average larger random numbers after inhaling than after exhaling. In Experiment 2, 24 further adults estimated the numerosity of dot patterns that were briefly shown after either inhaling or exhaling. Again, we obtained on average larger responses following inhalation than exhalation. These converging results extend models of situated cognition according to which higher-level cognition is sensitive to transient interoceptive states.}, language = {en} } @article{FelisattiAagtenMurphyLaubrocketal.2020, author = {Felisatti, Arianna and Aagten-Murphy, David and Laubrock, Jochen and Shaki, Samuel and Fischer, Martin H.}, title = {The brain's asymmetric frequency tuning}, series = {Symmetry / Molecular Diversity Preservation International (MDPI)}, volume = {12}, journal = {Symmetry / Molecular Diversity Preservation International (MDPI)}, number = {12}, publisher = {MDPI}, address = {Basel}, issn = {2073-8994}, doi = {10.3390/sym12122083}, pages = {25}, year = {2020}, abstract = {To construct a coherent multi-modal percept, vertebrate brains extract low-level features (such as spatial and temporal frequencies) from incoming sensory signals. However, because frequency processing is lateralized with the right hemisphere favouring low frequencies while the left favours higher frequencies, this introduces asymmetries between the hemispheres. Here, we describe how this lateralization shapes the development of several cognitive domains, ranging from visuo-spatial and numerical cognition to language, social cognition, and even aesthetic appreciation, and leads to the emergence of asymmetries in behaviour. We discuss the neuropsychological and educational implications of these emergent asymmetries and suggest future research approaches.}, language = {en} } @article{FelisattiLaubrockShakietal.2020, author = {Felisatti, Arianna and Laubrock, Jochen and Shaki, Samuel and Fischer, Martin H.}, title = {Commentary}, series = {Frontiers in Human Neuroscience}, volume = {14}, journal = {Frontiers in Human Neuroscience}, publisher = {Frontiers Research Foundation}, address = {Lausanne}, issn = {1662-5161}, doi = {10.3389/fnhum.2020.00099}, pages = {4}, year = {2020}, language = {en} } @article{FestmanAdamPrattetal.2013, author = {Festman, Yariv and Adam, Jos J. and Pratt, Jay and Fischer, Martin H.}, title = {Both hand position and movement direction modulate visual attention}, series = {Frontiers in psychology}, volume = {4}, journal = {Frontiers in psychology}, number = {4}, publisher = {Frontiers Research Foundation}, address = {Lausanne}, issn = {1664-1078}, doi = {10.3389/fpsyg.2013.00657}, pages = {6}, year = {2013}, abstract = {The current study explored effects of continuous hand motion on the allocation of visual attention. A concurrent paradigm was used to combine visually concealed continuous hand movements with an attentionally demanding letter discrimination task. The letter probe appeared contingent upon the moving right hand passing through one of six positions. Discrimination responses were then collected via a keyboard press with the static left hand. Both the right hand's position and its movement direction systematically contributed to participants' visual sensitivity. Discrimination performance increased substantially when the right hand was distant from, but moving toward the visual probe location (replicating the far-hand effect, Festrnan et al., 2013). However, this effect disappeared when the probe appeared close to the static left hand, supporting the view that static and dynamic features of both hands combine in modulating pragmatic maps of attention.}, language = {en} } @article{Fischer2018, author = {Fischer, Martin H.}, title = {Why Numbers Are Embodied Concepts}, series = {Frontiers in Psychology}, volume = {8}, journal = {Frontiers in Psychology}, publisher = {Frontiers Research Foundation}, address = {Lausanne}, issn = {1664-1078}, doi = {10.3389/fpsyg.2017.02347}, pages = {1 -- 3}, year = {2018}, language = {en} } @misc{FischerBrugger2011, author = {Fischer, Martin H. and Brugger, Peter}, title = {When digits help digits spatial-numerical associations point to finger counting as prime example of embodied cognition}, series = {Frontiers in psychology}, volume = {2}, journal = {Frontiers in psychology}, publisher = {Frontiers Research Foundation}, address = {Lausanne}, issn = {1664-1078}, doi = {10.3389/fpsyg.2011.00260}, pages = {7}, year = {2011}, abstract = {Spatial numerical associations (SNAs) are prevalent yet their origin is poorly understood. We first consider the possible prime role of reading habits in shaping SNAs and list three observations that argue against a prominent influence of this role: (1) directional reading habits for numbers may conflict with those for non-numerical symbols, (2) short-term experimental manipulations can overrule the impact of decades of reading experience, (3) SNAs predate the acquisition of reading. As a promising alternative, we discuss behavioral, neuroscientific, and neuropsychological evidence in support of finger counting as the most likely initial determinant of SNAs. Implications of this "manumerical cognition" stance for the distinction between grounded, embodied, and situated cognition are discussed.}, language = {en} } @article{FischerMiklashevskyShaki2018, author = {Fischer, Martin H. and Miklashevsky, Alex A. and Shaki, Samuel}, title = {Commentary : The Developmental Trajectory of the Operational Momentum Effect}, series = {Frontiers in Psychology}, volume = {9}, journal = {Frontiers in Psychology}, publisher = {Frontiers Research Foundation}, address = {Lausanne}, issn = {1664-1078}, doi = {10.3389/fpsyg.2018.02259}, pages = {3}, year = {2018}, language = {en} } @misc{FischerShaki2018, author = {Fischer, Martin H. and Shaki, Samuel}, title = {Number concepts: abstract and embodied}, series = {Philosophical transactions of the Royal Society of London : B, Biological sciences}, volume = {373}, journal = {Philosophical transactions of the Royal Society of London : B, Biological sciences}, number = {1752}, publisher = {Royal Society}, address = {London}, issn = {0962-8436}, doi = {10.1098/rstb.2017.0125}, pages = {8}, year = {2018}, abstract = {Numerical knowledge, including number concepts and arithmetic procedures, seems to be a clear-cut case for abstract symbol manipulation. Yet, evidence from perceptual and motor behaviour reveals that natural number knowledge and simple arithmetic also remain closely associated with modal experiences. Following a review of behavioural, animal and neuroscience studies of number processing, we propose a revised understanding of psychological number concepts as grounded in physical constraints, embodied in experience and situated through task-specific intentions. The idea that number concepts occupy a range of positions on the continuum between abstract and modal conceptual knowledge also accounts for systematic heuristics and biases in mental arithmetic, thus inviting psycho-logical approaches to the study of the mathematical mind.}, language = {en} } @article{FischerShaki2017, author = {Fischer, Martin H. and Shaki, Samuel}, title = {Implicit Spatial-Numerical Associations: Negative Numbers and the Role of Counting Direction}, series = {Journal of experimental psychology : Human perception and performance}, volume = {43}, journal = {Journal of experimental psychology : Human perception and performance}, publisher = {American Psychological Association}, address = {Washington}, issn = {0096-1523}, doi = {10.1037/xhp0000369}, pages = {639 -- 643}, year = {2017}, abstract = {It has been debated whether negative number concepts are cognitively represented on the same mental number line as positive number concepts. The present study reviews this debate and identifies limitations of previous studies. A method with nonspatial stimuli and responses is applied to overcome these limitations and to document a systematic implicit association of negative numbers with left space, thus indicating a leftward extension of the mental number line. Importantly, this result only held for left-to-right counting adults. Implications for the experiential basis of abstract conceptual knowledge are discussed.}, language = {en} } @unpublished{FischerSixtusGoebel2015, author = {Fischer, Martin H. and Sixtus, Elena and G{\"o}bel, Silke M.}, title = {Commentary: A pointer about grasping numbers}, series = {Frontiers in psychology}, volume = {6}, journal = {Frontiers in psychology}, publisher = {Frontiers Research Foundation}, address = {Lausanne}, doi = {10.3389/fpsyg.2015.00227}, pages = {3}, year = {2015}, language = {en} } @article{HartmannMastFischer2015, author = {Hartmann, Matthias and Mast, Fred W. and Fischer, Martin H.}, title = {Spatial biases during mental arithmetic: evidence from eye movements on a blank screen}, series = {Frontiers in psychology}, volume = {6}, journal = {Frontiers in psychology}, publisher = {Frontiers Research Foundation}, address = {Lausanne}, issn = {1664-1078}, doi = {10.3389/fpsyg.2015.00012}, pages = {8}, year = {2015}, abstract = {While the influence of spatial-numerical associations in number categorization tasks has been well established, their role in mental arithmetic is less clear. It has been hypothesized that mental addition leads to rightward and upward shifts of spatial attention (along the "mental number line"), whereas subtraction leads to leftward and downward shifts. We addressed this hypothesis by analyzing spontaneous eye movements during mental arithmetic. Participants solved verbally presented arithmetic problems (e.g., 2 + 7, 8-3) aloud while looking at a blank screen. We found that eye movements reflected spatial biases in the ongoing mental operation: Gaze position shifted more upward when participants solved addition compared to subtraction problems, and the horizontal gaze position was partly determined by the magnitude of the operands. Interestingly, the difference between addition and subtraction trials was driven by the operator (plus vs. minus) but was not influenced by the computational process. Thus, our results do not support the idea of a mental movement toward the solution during arithmetic but indicate a semantic association between operation and space.}, language = {en} } @article{HatukaiAlgomFischer2020, author = {Hatukai, Tatiana and Algom, Daniel and Fischer, Martin H.}, title = {Rodin has it!}, series = {Acta psychologica : international journal of psychonomics}, volume = {210}, journal = {Acta psychologica : international journal of psychonomics}, publisher = {Elsevier}, address = {Amsterdam [u.a.]}, issn = {0001-6918}, doi = {10.1016/j.actpsy.2020.103160}, pages = {6}, year = {2020}, abstract = {We report a new discovery on the role of hands in guiding attention, using the classic Stroop effect as our assay. We show that the Stroop effect diminishes, hence selective attention improves, when observers hold their chin, emulating Rodin's famous sculpture, "The Thinker." In two experiments we show that the Rodin posture improves the selectivity of attention as efficiently as holding the hands nearby the visual stimulus (the near-hands effect). Because spatial proximity to the displayed stimulus is neither present nor intended, the presence of the Rodin effect implies that attentional prioritization by the hands is not limited to the space between the hands.}, language = {en} } @misc{JeglinskiMendeShakiFischer2018, author = {Jeglinski-Mende, Melinda A. and Shaki, Samuel and Fischer, Martin H.}, title = {Rezension zu: Varma, Sashank ; Schwartz, Daniel L.: The mental representation of integers : an abstract-to-concrete shift in the understanding of mathematical concepts. - Cognition. - 121 (2011), 3. - S. 363 - 385}, series = {Frontiers in psychology}, volume = {9}, journal = {Frontiers in psychology}, publisher = {Frontiers Research Foundation}, address = {Lausanne}, issn = {1664-1078}, doi = {10.3389/fpsyg.2018.00209}, pages = {4}, year = {2018}, language = {en} } @article{KeehnerFischer2012, author = {Keehner, Madeleine and Fischer, Martin H.}, title = {Unusual bodies, uncommon behaviors individual and group differences in embodied cognition in spatial tasks}, series = {Spatial cognition and computation}, volume = {12}, journal = {Spatial cognition and computation}, number = {2-3}, publisher = {Taylor \& Francis Group}, address = {Philadelphia}, issn = {1387-5868}, doi = {10.1080/13875868.2012.659303}, pages = {71 -- 82}, year = {2012}, abstract = {This editorial introduces a set of papers on differential embodiment in spatial tasks. According to the theoretical notion of embodied cognition, our experiences of acting in the world, and the constraints of our sensory and motor systems, strongly shape our cognitive functions. In the current set of papers, the authors were asked to particularly consider idiosyncratic or differential embodied cognition in the context of spatial tasks and processes. In each contribution, differential embodiment is considered from one of two complementary perspectives: either by considering unusual individuals, who have atypical bodies or uncommon experiences of interacting with the world; or by exploring individual differences in the general population that reflect the naturally occurring variability in embodied processes. Our editorial summarizes the contributions to this special issue and discusses the insights they offer. We conclude from this collection of papers that exploring differences in the recruitment and involvement of embodied processes can be highly informative, and can add an extra dimension to our understanding of spatial cognitive functions. Taking a broader perspective, it can also shed light on important theoretical and empirical questions concerning the nature of embodied cognition per se.}, language = {en} } @article{LobmaierFischer2015, author = {Lobmaier, Janek S. and Fischer, Martin H.}, title = {Facial Feedback Affects Perceived Intensity but Not Quality of Emotional Expressions}, series = {Brain Sciences}, volume = {5}, journal = {Brain Sciences}, number = {3}, publisher = {MDPI AG}, address = {Basel}, issn = {2076-3425}, doi = {10.3390/brainsci5030357}, pages = {357 -- 368}, year = {2015}, abstract = {Motivated by conflicting evidence in the literature, we re-assessed the role of facial feedback when detecting quantitative or qualitative changes in others' emotional expressions. Fifty-three healthy adults observed self-paced morph sequences where the emotional facial expression either changed quantitatively (i.e., sad-to-neutral, neutral-to-sad, happy-to-neutral, neutral-to-happy) or qualitatively (i.e. from sad to happy, or from happy to sad). Observers held a pen in their own mouth to induce smiling or frowning during the detection task. When morph sequences started or ended with neutral expressions we replicated a congruency effect: Happiness was perceived longer and sooner while smiling; sadness was perceived longer and sooner while frowning. Interestingly, no such congruency effects occurred for transitions between emotional expressions. These results suggest that facial feedback is especially useful when evaluating the intensity of a facial expression, but less so when we have to recognize which emotion our counterpart is expressing.}, language = {en} } @misc{MiklashevskyFischer2017, author = {Miklashevsky, Alex A. and Fischer, Martin H.}, title = {Commentary: Down with Retirement: Implications of Embodied Cognition for Healthy Aging}, series = {Frontiers in psychology}, volume = {8}, journal = {Frontiers in psychology}, publisher = {Frontiers Research Foundation}, address = {Lausanne}, issn = {1664-1078}, doi = {10.3389/fpsyg.2017.00599}, pages = {9 -- 22}, year = {2017}, language = {en} } @article{MiklashevskyLindemannFischer2021, author = {Miklashevsky, Alex and Lindemann, Oliver and Fischer, Martin H.}, title = {The force of numbers}, series = {Frontiers in human neuroscience / Frontiers Research Foundation}, volume = {14}, journal = {Frontiers in human neuroscience / Frontiers Research Foundation}, publisher = {Frontiers Media}, address = {Lausanne}, issn = {1662-5161}, doi = {10.3389/fnhum.2020.590508}, pages = {16}, year = {2021}, abstract = {The study has two objectives: (1) to introduce grip force recording as a new technique for studying embodied numerical processing; and (2) to demonstrate how three competing accounts of numerical magnitude representation can be tested by using this new technique: the Mental Number Line (MNL), A Theory of Magnitude (ATOM) and Embodied Cognition (finger counting-based) account. While 26 healthy adults processed visually presented single digits in a go/no-go n-back paradigm, their passive holding forces for two small sensors were recorded in both hands. Spontaneous and unconscious grip force changes related to number magnitude occurred in the left hand already 100-140 ms after stimulus presentation and continued systematically. Our results support a two-step model of number processing where an initial stage is related to the automatic activation of all stimulus properties whereas a later stage consists of deeper conscious processing of the stimulus. This interpretation generalizes previous work with linguistic stimuli and elaborates the timeline of embodied cognition. We hope that the use of grip force recording will advance the field of numerical cognition research.}, language = {en} } @article{SchmidtFelisattiAsteretal.2021, author = {Schmidt, Hendrikje and Felisatti, Arianna and Aster, Michael von and Wilbert, J{\"u}rgen and Moers, Arpad von and Fischer, Martin H.}, title = {Neuromuscular diseases affect number representation and processing}, series = {Frontiers in psychology / Frontiers Research Foundation}, volume = {12}, journal = {Frontiers in psychology / Frontiers Research Foundation}, publisher = {Frontiers Research Foundation}, address = {Lausanne}, issn = {1664-1078}, doi = {10.3389/fpsyg.2021.697881}, pages = {13}, year = {2021}, abstract = {Spinal muscular atrophy (SMA) and Duchenne muscular dystrophy (DMD) both are rare genetic neuromuscular diseases with progressive loss of motor ability. The neuromotor developmental course of those diseases is well documented. In contrast, there is only little evidence about characteristics of general and specific cognitive development. In both conditions the final motor outcome is characterized by an inability to move autonomously: children with SMA never accomplish independent motoric exploration of their environment, while children with DMD do but later lose this ability again. These profound differences in developmental pathways might affect cognitive development of SMA vs. DMD children, as cognition is shaped by individual motor experiences. DMD patients show impaired executive functions, working memory, and verbal IQ, whereas only motor ability seems to be impaired in SMA. Advanced cognitive capacity in SMA may serve as a compensatory mechanism for achieving in education, career progression, and social satisfaction. This study aimed to relate differences in basic numerical concepts and arithmetic achievement in SMA and DMD patients to differences in their motor development and resulting sensorimotor and environmental experiences. Horizontal and vertical spatial-numerical associations were explored in SMA/DMD children ranging between 6 and 12 years through the random number generation task. Furthermore, arithmetic skills as well as general cognitive ability were assessed. Groups differed in spatial number processing as well as in arithmetic and domain-general cognitive functions. Children with SMA showed no horizontal and even reversed vertical spatial-numerical associations. Children with DMD on the other hand revealed patterns in spatial numerical associations comparable to healthy developing children. From the embodied Cognition perspective, early sensorimotor experience does play a role in development of mental number representations. However, it remains open whether and how this becomes relevant for the acquisition of higher order cognitive and arithmetic skills.}, language = {en} }