@article{BryantDaviesSoletal.2022, author = {Bryant, Seth and Davies, Evan and Sol, David and Davis, Sandy}, title = {The progression of flood risk in southern Alberta since the 2013 flood}, series = {Journal of flood risk management}, volume = {15}, journal = {Journal of flood risk management}, number = {3}, publisher = {Wiley-Blackwell}, address = {Oxford}, issn = {1753-318X}, doi = {10.1111/jfr3.12811}, pages = {18}, year = {2022}, abstract = {After a century of semi-restricted floodplain development, Southern Alberta, Canada, was struck by the devastating 2013 Flood. Aging infrastructure and limited property-level floodproofing likely contributed to the \$4-6 billion (CAD) losses. Following this catastrophe, Alberta has seen a revival in flood management, largely focused on structural protections. However, concurrent with the recent structural work was a 100,000+ increase in Calgary's population in the 5 years following the flood, leading to further densification of high-hazard areas. This study implements the novel Stochastic Object-based Flood damage Dynamic Assessment (SOFDA) model framework to quantify the progression of the direct-damage flood risk in a mature urban neighborhood after the 2013 Flood. Five years of remote-sensing data, property assessment records, and inundation simulations following the flood are used to construct the model. Results show that in these 5 years, vulnerability trends (like densification) have increased flood risk by 4\%; however, recent structural mitigation projects have reduced overall flood risk by 47\% for this case study. These results demonstrate that the flood management revival in Southern Alberta has largely been successful at reducing flood risk; however, the gains are under threat from continued development and densification absent additional floodproofing regulations.}, language = {en} } @article{BoehnkeKrehlMoermannetal.2022, author = {B{\"o}hnke, Denise and Krehl, Alice and Moermann, Kai and Volk, Rebekka and L{\"u}tzkendorf, Thomas and Naber, Elias and Becker, Ronja and Norra, Stefan}, title = {Mapping urban green and its ecosystem services at microscale-a methodological approach for climate adaptation and biodiversity}, series = {Sustainability / Multidisciplinary Digital Publishing Institute (MDPI)}, volume = {14}, journal = {Sustainability / Multidisciplinary Digital Publishing Institute (MDPI)}, number = {15}, publisher = {MDPI}, address = {Basel}, issn = {2071-1050}, doi = {10.3390/su14159029}, pages = {26}, year = {2022}, abstract = {The current awareness of the high importance of urban green leads to a stronger need for tools to comprehensively represent urban green and its benefits. A common scientific approach is the development of urban ecosystem services (UES) based on remote sensing methods at the city or district level. Urban planning, however, requires fine-grained data that match local management practices. Hence, this study linked local biotope and tree mapping methods to the concept of ecosystem services. The methodology was tested in an inner-city district in SW Germany, comparing publicly accessible areas and non-accessible courtyards. The results provide area-specific [m(2)] information on the green inventory at the microscale, whereas derived stock and UES indicators form the basis for comparative analyses regarding climate adaptation and biodiversity. In the case study, there are ten times more micro-scale green spaces in private courtyards than in the public space, as well as twice as many trees. The approach transfers a scientific concept into municipal planning practice, enables the quantitative assessment of urban green at the microscale and illustrates the importance for green stock data in private areas to enhance decision support in urban development. Different aspects concerning data collection and data availability are critically discussed.}, language = {en} } @article{MillesDammhahnJeltschetal.2022, author = {Milles, Alexander Benedikt and Dammhahn, Melanie and Jeltsch, Florian and Schl{\"a}gel, Ulrike and Grimm, Volker}, title = {Fluctuations in density-dependent selection drive the evolution of a pace-of-life syndrome within and between populations}, series = {The American naturalist : a bi-monthly journal devoted to the advancement and correlation of the biological sciences}, volume = {199}, journal = {The American naturalist : a bi-monthly journal devoted to the advancement and correlation of the biological sciences}, number = {4}, publisher = {Univ. of Chicago Press}, address = {Chicago}, issn = {0003-0147}, doi = {10.1086/718473}, pages = {E124 -- E139}, year = {2022}, abstract = {The pace-of-life syndrome (POLS) hypothesis posits that suites of traits are correlated along a slow-fast continuum owing to life history trade-offs. Despite widespread adoption, environmental conditions driving the emergence of POLS remain unclear. A recently proposed conceptual framework of POLS suggests that a slow-fast continuum should align to fluctuations in density-dependent selection. We tested three key predictions made by this framework with an ecoevolutionary agent-based population model. Selection acted on responsiveness (behavioral trait) to interpatch resource differences and the reproductive investment threshold (life history trait). Across environments with density fluctuations of different magnitudes, we observed the emergence of a common axis of trait covariation between and within populations (i.e., the evolution of a POLS). Slow-type (fast-type) populations with high (low) responsiveness and low (high) reproductive investment threshold were selected at high (low) population densities and less (more) intense and frequent density fluctuations. In support of the predictions, fast-type populations contained a higher degree of variation in traits and were associated with higher intrinsic reproductive rate (r(0)) and higher sensitivity to intraspecific competition (gamma), pointing to a universal trade-off. While our findings support that POLS aligns with density-dependent selection, we discuss possible mechanisms that may lead to alternative evolutionary pathways.}, language = {en} } @article{SmirnovShpritsAllisonetal.2022, author = {Smirnov, Artem and Shprits, Yuri Y. and Allison, Hayley and Aseev, Nikita and Drozdov, Alexander and Kollmann, Peter and Wang, Dedong and Saikin, Anthony}, title = {An empirical model of the equatorial electron pitch angle distributions in earth's outer radiation belt}, series = {Space Weather: the International Journal of Research and Applications}, volume = {20}, journal = {Space Weather: the International Journal of Research and Applications}, number = {9}, publisher = {American Geophysical Union}, address = {Washington, DC}, issn = {1542-7390}, doi = {10.1029/2022SW003053}, pages = {17}, year = {2022}, abstract = {In this study, we present an empirical model of the equatorial electron pitch angle distributions (PADs) in the outer radiation belt based on the full data set collected by the Magnetic Electron Ion Spectrometer (MagEIS) instrument onboard the Van Allen Probes in 2012-2019. The PADs are fitted with a combination of the first, third and fifth sine harmonics. The resulting equation resolves all PAD types found in the outer radiation belt (pancake, flat-top, butterfly and cap PADs) and can be analytically integrated to derive omnidirectional flux. We introduce a two-step modeling procedure that for the first time ensures a continuous dependence on L, magnetic local time and activity, parametrized by the solar wind dynamic pressure. We propose two methods to reconstruct equatorial electron flux using the model. The first approach requires two uni-directional flux observations and is applicable to low-PA data. The second method can be used to reconstruct the full equatorial PADs from a single uni- or omnidirectional measurement at off-equatorial latitudes. The model can be used for converting the long-term data sets of electron fluxes to phase space density in terms of adiabatic invariants, for physics-based modeling in the form of boundary conditions, and for data assimilation purposes.}, language = {en} }