@article{LindenBernertFunkeetal.2017, author = {Linden, Michael and Bernert, Sebastian and Funke, Ariane and Dreinh{\"o}fer, Karsten E. and J{\"o}bges, Michael and von Kardorff, Ernst and Riedel-Heller, Steffi G. and Spyra, Karla and V{\"o}ller, Heinz and Warschburger, Petra and Wippert, Pia-Maria}, title = {Medizinische Rehabilitation unter einer Lifespan-Perspektive}, series = {Bundesgesundheitsblatt, Gesundheitsforschung, Gesundheitsschutz}, volume = {60}, journal = {Bundesgesundheitsblatt, Gesundheitsforschung, Gesundheitsschutz}, publisher = {Springer}, address = {New York}, issn = {1436-9990}, doi = {10.1007/s00103-017-2520-2}, pages = {445 -- 452}, year = {2017}, abstract = {Die Lifespan-Forschung untersucht die Entwicklung von Individuen {\"u}ber den gesamten Lebenslauf. Die medizinische Rehabilitation hat nach geltendem Sozialrecht die Aufgabe, chronische Krankheiten abzuwenden, zu beseitigen, zu mindern, auszugleichen, eine Verschlimmerung zu verh{\"u}ten und Negativfolgen f{\"u}r die Lebensf{\"u}hrung zu reduzieren. Dies erfordert in wissenschaftlicher wie in praxisbezogener Hinsicht die Entwicklung einer Lebensspannenperspektive als Voraussetzung f{\"u}r die Klassifikation und Diagnostik chronischer Erkrankungen, die Beschreibung von verlaufsbeeinflussenden Faktoren, kritischen Lebensphasen und Critical Incidents (kritische Verlaufszeitpunkte), die Durchf{\"u}hrung von prophylaktischen Maßnahmen, die Entwicklung von Assessmentverfahren zur Erfassung und Bewertung von Verl{\"a}ufen oder Vorbehandlungen, die Auswahl und Priorisierung von Interventionen, eine Behandlungs- und Behandlerkoordination auf der Zeitachse, die Pr{\"a}zisierung der Aufgabenstellung f{\"u}r spezialisierte Rehabilitationsmaßnahmen, wie beispielsweise Rehabilitationskliniken, und als Grundlage f{\"u}r die Sozialmedizin. Aufgrund der Vielfalt der individuellen Risikokonstellationen, Krankheitsverl{\"a}ufe und Behandlungssituationen {\"u}ber die Lebensspanne hinweg, bedarf es in der medizinischen Rehabilitation in besonderer Weise einer personalisierten Medizin, die zugleich rehabilitationsf{\"o}rderliche und -behindernde Umweltfaktoren im Rehabilitationsverlauf ber{\"u}cksichtigt.}, language = {de} } @article{SchellerYarmanBachmannetal.2014, author = {Scheller, Frieder W. and Yarman, Aysu and Bachmann, Till and Hirsch, Thomas and Kubick, Stefan and Renneberg, Reinhard and Schumacher, Soeren and Wollenberger, Ursula and Teller, Carsten and Bier, Frank Fabian}, title = {Future of biosensors: a personal view}, series = {Advances in biochemical engineering, biotechnology}, volume = {140}, journal = {Advances in biochemical engineering, biotechnology}, editor = {Gu, MB and Kim, HS}, publisher = {Springer}, address = {Berlin}, isbn = {978-3-642-54143-8; 978-3-642-54142-1}, issn = {0724-6145}, doi = {10.1007/10_2013_251}, pages = {1 -- 28}, year = {2014}, abstract = {Biosensors representing the technological counterpart of living senses have found routine application in amperometric enzyme electrodes for decentralized blood glucose measurement, interaction analysis by surface plasmon resonance in drug development, and to some extent DNA chips for expression analysis and enzyme polymorphisms. These technologies have already reached a highly advanced level and need minor improvement at most. The dream of the "100-dollar' personal genome may come true in the next few years provided that the technological hurdles of nanopore technology or of polymerase-based single molecule sequencing can be overcome. Tailor-made recognition elements for biosensors including membrane-bound enzymes and receptors will be prepared by cell-free protein synthesis. As alternatives for biological recognition elements, molecularly imprinted polymers (MIPs) have been created. They have the potential to substitute antibodies in biosensors and biochips for the measurement of low-molecular-weight substances, proteins, viruses, and living cells. They are more stable than proteins and can be produced in large amounts by chemical synthesis. Integration of nanomaterials, especially of graphene, could lead to new miniaturized biosensors with high sensitivity and ultrafast response. In the future individual therapy will include genetic profiling of isoenzymes and polymorphic forms of drug-metabolizing enzymes especially of the cytochrome P450 family. For defining the pharmacokinetics including the clearance of a given genotype enzyme electrodes will be a useful tool. For decentralized online patient control or the integration into everyday "consumables' such as drinking water, foods, hygienic articles, clothing, or for control of air conditioners in buildings and cars and swimming pools, a new generation of "autonomous' biosensors will emerge.}, language = {en} }