@phdthesis{Barchewitz2021, author = {Barchewitz, Tino}, title = {Impact of microcystin on the non-canonical localization of RubisCO in the toxic bloom-forming cyanobacterium Microcystis aeruginosa PCC7806}, doi = {10.25932/publishup-50829}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-508299}, school = {Universit{\"a}t Potsdam}, pages = {vii, 106}, year = {2021}, abstract = {Cyanobacteria are an abundant bacterial group and are found in a variety of ecological niches all around the globe. They can serve as a real threat for fish or mammals and can restrict the use of lakes or rivers for recreational purposes or as a source of drinking water, when they form blooms. One of the most abundant bloom-forming cyanobacteria is Microcystis aeruginosa. In the first part of the study, the role and possible dynamics of RubisCO in M. aeruginosa during high-light irradiation were examined. Its response was analyzed on the protein and peptide level via immunoblotting, immunofluorescence microscopy and with high performance liquid chromatography (HPLC). It was revealed that large amounts of RubisCO were located outside of carboxysomes under the applied high light stress. RubisCO aggregated mainly underneath the cytoplasmic membrane. There it forms a putative Calvin-Benson-Bassham (CBB) super complex together with other enzymes of photosynthesis. This complex could be part of an alternative carbon-concentrating mechanism (CCM) in M. aeruginosa, which enables a faster, and energy saving adaptation to high light stress of the whole bloom. Furthermore, the re-localization of RubisCO was delayed in the microcystin-deficient mutant ΔmcyB and RubisCO was more evenly distributed over the cell in comparison to the wild type. Since ΔmcyB is not harmed in its growth, possibly other produced cyanopeptides as aeruginosin or cyanopeptolin also play a role in the stabilization of RubisCO and the putative CBB complex, especially in the microcystin-free mutant. In the second part of this work, the possible role of microcystin as an extracellular signaling peptide during the diurnal cycle was studied. HPLC analysis showed a strong increase of extracellular microcystin in the wild type when the population entered nighttime and it resumed into the next day as well. Together with the increase of extracellular microcystin, a strong decrease of protein-bound intracellular microcystin was observed via immunoblot analysis. Interestingly, the signal of the large subunit of RubisCO (RbcL) also diminished when high amounts of microcystin were present in the surrounding medium. Microcystin addition experiments to M. aeruginosa WT and ΔmcyB cultures support this observation, since the immunoblot signal of both subunits of RubisCO and CcmK, a shell protein of carboxysomes, diminished after the addition of microcystin. In addition, the fluctuation of cyanopeptolin during the diurnal cycle indicates a more prominent role of other cyanopeptides besides microcystin as a signaling peptide, intracellularly as well as extracellularly.}, language = {en} } @article{Spijkerman2011, author = {Spijkerman, Elly}, title = {The expression of a carbon concentrating mechanism in Chlamydomonas acidophila under variable phosphorus, iron, and CO2 concentrations}, series = {Photosynthesis research}, volume = {109}, journal = {Photosynthesis research}, number = {1-3}, publisher = {Springer}, address = {Dordrecht}, issn = {0166-8595}, doi = {10.1007/s11120-010-9607-z}, pages = {179 -- 189}, year = {2011}, abstract = {The CO2 acquisition was analyzed in Chlamydomonas acidophila at pH 2.4 in a range of medium P and Fe concentrations and at high and low CO2 condition. The inorganic carbon concentrating factor (CCF) was related to cellular P quota (Q(p)), maximum CO2-uptake rate by photosynthesis (V-max; O-2), half saturation constant for CO2 uptake (K-0.5), and medium Fe concentration. There was no effect of the medium Fe concentration on the CCF. The CCF increased with increasing Q(p) in both high and low CO2 grown algae, but maximum Q(p) was 6-fold higher in the low CO2 cells. In high CO2 conditions, the CCF was low, ranging between 0.8 and 3.5. High CCF values up to 9.1 were only observed in CO2-limited cells, but P- and CO2-colimited cells had a low CCF. High CCF did not relate with a low K-0.5 as all CO2-limited cells had a low K-0.5 (<4 mu M CO2). High Ci-pools in cells with high Qp suggested the presence of an active CO2-uptake mechanism. The CCF also increased with increasing V-max; O-2 which reflect an adaptation to the nutrient in highest demand (CO2) under balanced growth conditions. It is proposed that the size of the CCF in C. acidophila is more strongly related to porter density for CO2 uptake (reflected in V-max; O-2) and less- to high-affinity CO2 uptake (low K-0.5) at balanced growth. In addition, high CCF can only be realized with high Q(p).}, language = {en} }