@article{WessigJohnSperlichetal.2020, author = {Wessig, Pablo and John, Leonard and Sperlich, Eric and Kelling, Alexandra}, title = {Sulfur tuning of [1,3]-dioxolo[4.5-f]benzodioxole (DBD) fluorescent dyes}, series = {European journal of organic chemistry}, volume = {2021}, journal = {European journal of organic chemistry}, number = {3}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1434-193X}, doi = {10.1002/ejoc.202001418}, pages = {499 -- 511}, year = {2020}, abstract = {The replacement of oxygen by sulfur atoms of [1,3]-dioxolo[4.5-f]benzodioxole (DBD) fluorescent dyes is an efficient way to adjust the photophysical properties (sulfur tuning). While previously developed S-4-DBD dyes exhibit considerably red-shifted absorption and emission wavelength, the heavy atom effect of four sulfur atoms cause low fluorescence quantum yields and short fluorescence lifetimes. Herein, we demonstrate that the replacement of less than four sulfur atoms (S-1-DBD, 1,2-S-2-DBD, and 1,4-S-2-DBD dyes) permits a fine-tuning of the photophysical properties. In some cases, a similar influence on the wavelength without the detrimental effect on the quantum yields and lifetimes is observed. Furthermore, the synthetic accessibility of S-1- and S-2-DBD dyes is improved, compared with S-4-DBD dyes. For coupling with biomolecules a series of reactive derivatives of the new dyes were developed (azides, OSu esters, alkynes, maleimides).}, language = {en} } @misc{WessigJohnSperlichetal.2020, author = {Wessig, Pablo and John, Leonard and Sperlich, Eric and Kelling, Alexandra}, title = {Sulfur tuning of [1,3]-dioxolo[4.5-f]benzodioxole (DBD) fluorescent dyes}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {3}, issn = {1866-8372}, doi = {10.25932/publishup-56624}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-566241}, pages = {15}, year = {2020}, abstract = {The replacement of oxygen by sulfur atoms of [1,3]-dioxolo[4.5-f]benzodioxole (DBD) fluorescent dyes is an efficient way to adjust the photophysical properties (sulfur tuning). While previously developed S-4-DBD dyes exhibit considerably red-shifted absorption and emission wavelength, the heavy atom effect of four sulfur atoms cause low fluorescence quantum yields and short fluorescence lifetimes. Herein, we demonstrate that the replacement of less than four sulfur atoms (S-1-DBD, 1,2-S-2-DBD, and 1,4-S-2-DBD dyes) permits a fine-tuning of the photophysical properties. In some cases, a similar influence on the wavelength without the detrimental effect on the quantum yields and lifetimes is observed. Furthermore, the synthetic accessibility of S-1- and S-2-DBD dyes is improved, compared with S-4-DBD dyes. For coupling with biomolecules a series of reactive derivatives of the new dyes were developed (azides, OSu esters, alkynes, maleimides).}, language = {en} } @article{WessigBadetkoCzarneckietal.2022, author = {Wessig, Pablo and Badetko, Dominik and Czarnecki, Maciej and Wichterich, Lukas and Schmidt, Peter and Brudy, Cosima and Sperlich, Eric and Kelling, Alexandra}, title = {Studies toward the total synthesis of arylnaphthalene lignans via a Photo-Dehydro-Diels-Alder (PDDA) reaction}, series = {The journal of organic chemistry}, volume = {87}, journal = {The journal of organic chemistry}, number = {9}, publisher = {American Chemical Society}, address = {Washington}, issn = {0022-3263}, doi = {10.1021/acs.joc.2c00195}, pages = {5904 -- 5915}, year = {2022}, abstract = {An efficient method for the preparation of arylnaphthalene lignans (ANLs) was developed, which is based on thePhoto-Dehydro-DIELS-ALDER(PDDA) reaction. While intermolecular PDDA reactions turned out to be inefficient, theintramolecular variant using suberic acid as tether linking two aryl propiolic esters smoothly provided naphthalenophanes. Theirradiations were performed with a previously developed annular continuous-flow reactor and UVB lamps. In this way, the naturalproducts Alashinol D, Taiwanin C, and an unnamed ANL could be prepared.}, language = {en} } @article{SperlichKoeckerling2021, author = {Sperlich, Eric and K{\"o}ckerling, Martin}, title = {[Nb6Cl12(CH3OH)4(OCH3)2] ⋅ DABCO ⋅ 1.66 CH2Cl2}, series = {Zeitschrift f{\"u}r anorganische und allgemeine Chemie : ZAAC = Journal of inorganic and general chemistry}, volume = {647}, journal = {Zeitschrift f{\"u}r anorganische und allgemeine Chemie : ZAAC = Journal of inorganic and general chemistry}, number = {18}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {0044-2313}, doi = {10.1002/zaac.202100138}, pages = {1759 -- 1763}, year = {2021}, abstract = {An easy-to-do synthesis for the hexanuclear niobium cluster compound [Nb6Cl12(CH3OH)(4)(OCH3)(2)] . DABCO . 1.66 CH2Cl2 has been developed. An one-pot reaction between the cluster precursor [Nb6Cl14(H2O)(4)] . 4H(2)O and methanol with the addition of DABCO leads to the crystallization of the title compound in high yield within a few minutes. The single-crystal X-ray structure of this cluster compound has been determined. Very strong, nearly symmetric intercluster hydrogen bonds Nb-6-MeO...H...OMe-Nb-6 are present between the cluster units. A bridging co-crystalline DABCO molecule is also involved in a three-dimensional hydrogen-bonding network.}, language = {en} } @article{SperlichKoeckerling2022, author = {Sperlich, Eric and K{\"o}ckerling, Martin}, title = {[Nb6Cl14(pyrazine)(4)], a versatile precursor for ligand-supported hexanuclear niobium cluster compounds: synthesis, characterization, follow-up reactions, and intermolecular interactions}, series = {Inorganic chemistry}, volume = {61}, journal = {Inorganic chemistry}, number = {5}, publisher = {American Chemical Society}, address = {Washington}, issn = {0020-1669}, doi = {10.1021/acs.inorgchem.1c03109}, pages = {2409 -- 2420}, year = {2022}, abstract = {The compound [Nb6Cl14(pyrazine)(4)]center dot 2CH(2)Cl(2) (1) was investigated for its suitability as a starting compound for new ligand-supported hexanuclear niobium cluster compounds. The synthesis, stability to air and increased temperature, solubility and usability for subsequent reactions of 1, and purification and separation of the reaction products are discussed. The compounds with cluster units [Nb6Cl14L4], where L = iso-quinoline N-oxides (2), 1,1-dimethylethylenediamines (3), or thiazoles (4), and [Nb6Cl14(PEt3)(3.76)(Et3PO)(0.24)]-[Nb6Cl14(MeCN)(4)]center dot 4MeCN (5) are presented as follow-up products. The crystal structures of compounds 1-5 are analyzed, and the structures are discussed with respect to their intraand intermolecular bonding situations and crystal packing. In addition to hydrogen bonds and pi-pi interactions, the appearance of chalcogen and halogen bonds and lone pair-pi interactions between Nb-6 cluster units was observed for the first time.}, language = {en} } @article{SperlichKoeckerling2021, author = {Sperlich, Eric and K{\"o}ckerling, Martin}, title = {Cluster salts [Nb6Cl12(HIm)(6)]A(n) (with HIm=1H-imidazole and A=Mineral Acid Anion, n=1 or 2) made in and with Bronsted-basic ionic liquids and liquid mixtures}, series = {ChemistryOpen}, volume = {10}, journal = {ChemistryOpen}, number = {2}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {2191-1363}, doi = {10.1002/open.202000266}, pages = {248 -- 254}, year = {2021}, abstract = {Four new hexanuclear niobium cluster compounds of the general formula [Nb6Cl12(HIm)(6)](A)(n) . x(solvent molecule) (HIm=1H-imidazole, A=mineral acid anion, Cl- (n=2) (1), (SO4)(2-) (n=1) (2), (CrO4)(2-) (n=1) (3), and (HAsO4)(2-) (n=1) (4)) were prepared. Their synthesis can be done in basic ionic liquids, which form on the addition of a mineral acid, which also delivers the counter anion for the final cluster compound, to an excess of the 1H-imidazole. Some addition of an auxiliary solvent, like methanol, improves the speed of crystallisation. The cluster unit comprises a hexanuclear Nb-6 unit of octahedral shape with the edges bridged by Cl atoms and the exo sites being occupied by N-bonded 1H-imidazole ligands. The cluster cation carries sixteen cluster-based electrons. Between the NH groups of the ligands of the cluster unit, the anions and the co-crystallised water (1), or 1H-imidazole and methanol molecules (2, 3, and 4) a network of hydrogen bonds exists.}, language = {en} } @article{SperlichKoeckerling2023, author = {Sperlich, Eric and K{\"o}ckerling, Martin}, title = {The double cluster compound [Nb6Cl14(MeCN)(4)] [Nb6Cl14(pyz)(4)].6MeCN (Me: methyl, pyz: pyrazine) with a layered structure resulting from weak intermolecular interactions}, series = {Zeitschrift f{\"u}r Naturforschung}, volume = {78}, journal = {Zeitschrift f{\"u}r Naturforschung}, number = {5}, publisher = {De Gruyter}, address = {Berlin}, issn = {0932-0776}, doi = {10.1515/znb-2023-0001}, pages = {279 -- 283}, year = {2023}, abstract = {The synthesis and the crystal structure of the double cluster compound [Nb6Cl14(MeCN)(4)][Nb6Cl14(pyz)(4)]middot6CH(3)CN are described. The synthesis is based on a partial ligand exchange reaction, which proceeds upon dissolving [Nb6Cl14(pyz)(4)]middot2CH(2)Cl(2) in acetonitrile. The compound is built up of two discrete neutral cluster units, which consist of octahedra of Nb-6 atoms coordinated by 12 edge-bridging chlorido and two terminal chlorido ligands, and four acetonitrile ligands on one and four pyrazine ligands on the other cluster unit. Co-crystallized acetonitrile molecules are also present. The single-crystal structure determination has revealed a cluster arrangement in which the [Nb6Cl14(pyz)(4)] units are connected by (halogen) lone-pair-(pyrazine) pi interactions. These lead to chains of [Nb6Cl14(pyz)(4)] clusters. These chains are further connected to cluster layers by (nitrile-halogen) dipole-dipole interactions, in which the [Nb6Cl14(MeCN)(4)] and co-crystallized MeCN molecules are also involved. These cluster layers are arranged parallel to the crystallographic {011} plane.}, language = {en} } @article{SperlichKellingKwesigaetal.2022, author = {Sperlich, Eric and Kelling, Alexandra and Kwesiga, George and Schmidt, Bernd}, title = {Intermolecular interactions in the solid-state structures of isoflavones}, series = {CrystEngComm / The Royal Society of Chemistry}, volume = {24}, journal = {CrystEngComm / The Royal Society of Chemistry}, number = {26}, publisher = {Royal Society of Chemistry}, address = {London}, issn = {1466-8033}, doi = {10.1039/d2ce00169a}, pages = {4731 -- 4739}, year = {2022}, abstract = {The molecular structures of three closely related isoflavones have been determined by single crystal X-ray diffraction and have been analysed by geometry matching with the CSD, Hirshfeld surface analysis and analysis of stacking interactions with the Aromatic Analyser program (CSD). The formation of the supramolecular structure by non-covalent interactions was studied and substantial differences in the macroscopic properties e.g., the solubility, were correlated with hydrogen bonding and pi-stacking interactions. Moreover, a correlation between the supramolecular structure, the torsion angle (between benzopyran group and aryl group), and macroscopic properties was determined in the three compounds.}, language = {en} } @article{SchwarzeSperlichMuelleretal.2021, author = {Schwarze, Thomas and Sperlich, Eric and M{\"u}ller, Thomas and Kelling, Alexandra and Holdt, Hans-J{\"u}rgen}, title = {Synthesis efforts of acyclic bis(monoalkylamino)maleonitriles and macrocyclic bis(dialkylamino)maleonitriles as fluorescent probes for cations and a new colorimetric copper(II) chemodosimeter}, series = {Helvetica chimica acta}, volume = {104}, journal = {Helvetica chimica acta}, number = {6}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1522-2675}, doi = {10.1002/hlca.202100028}, pages = {e2100028}, year = {2021}, abstract = {In this article, we report on the synthesis of acyclic bis(monoalkylamino)maleonitriles and on the intended synthesis of macrocyclic bis(dialkylamino)maleonitriles to get fluorescent probes for cations. During our efforts to synthesize macrocyclic bis(dialkylamino)maleonitriles, we were only able to isolate macrocyclic bis(dialkylamino)-fumaronitriles. The synthesis of macrocyclic bis(dialkylamino)maleonitriles is challenging, due to the fact that bis-(dialkylamino)fumaronitriles are thermodynamically more stable than the corresponding bis(dialkylamino)-maleonitriles. Further, it turned out that the acyclic bis(monoalkylamino)maleonitriles and macrocyclic bis-(dialkylamino)fumaronitriles are no suitable tools to detect cations by a strong fluorescence enhancement. Further, only the bis(monoalkylamino)maleonitriles, which are bearing a 2-pyridyl unit as an additional complexing unit, are able to selectively recognize copper(II) by a color change from yellow to red.}, language = {en} } @article{SchwarzeKellingSperlichetal.2021, author = {Schwarze, Thomas and Kelling, Alexandra and Sperlich, Eric and Holdt, Hans-J{\"u}rgen}, title = {Influence of regioisomerism in 9-anthracenyl-substituted dithiodicyanoethene derivatives on photoinduced electron transfer controlled by intramolecular charge transfer}, series = {ChemPhotoChem}, volume = {5}, journal = {ChemPhotoChem}, number = {10}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {2367-0932}, doi = {10.1002/cptc.202100070}, pages = {911 -- 914}, year = {2021}, abstract = {In this paper, we report on the fluorescence behaviour of three regioisomers which consist of two 9-anthracenyl fluorophores and of differently substituted dithiodicyanoethene moieties. These isomeric fluorescent probes show different quantum yields (phi(f)). In these probes, an oxidative photoinduced electron transfer (PET) from the excited 9-anthracenyl fluorophore to the dithiodicyanoethene unit quenches the fluorescence. This quenching process is accelerated by an intramolecular charge transfer (ICT) of the push-pull pi-electron system of the dithiodicyanoethene group. The acceleration of the PET depends on the strength of the ICT unit. The higher the dipole moment of the ICT unit, the stronger the observed fluorescence quenching. To the best of our knowledge, this is the first report of a regioisomeric influence on an oxidative PET by an ICT.}, language = {en} } @article{NchiozemNgnitedemSperlichMatietaetal.2023, author = {Nchiozem-Ngnitedem, Vaderament-Alexe and Sperlich, Eric and Matieta, Valaire Yemene and Kuete, Jenifer Reine Ngnouzouba and Kuete, Victor and Omer, Ejlal A. A. and Efferth, Thomas and Schmidt, Bernd}, title = {Synthesis and bioactivity of isoflavones from ficus carica and some non-natural analogues}, series = {Journal of natural products : Lloydia}, volume = {86}, journal = {Journal of natural products : Lloydia}, number = {6}, publisher = {American Chemical Society}, address = {Washington, DC}, issn = {0163-3864}, doi = {10.1021/acs.jnatprod.3c00219}, pages = {1520 -- 1528}, year = {2023}, abstract = {FicucariconeD (1) and its 4 '-demethyl congener 2 are isoflavones isolated from fruits of Ficus carica that share a 5,7-dimethoxy-6-prenyl-substituted A-ring. Both naturalproducts were, for the first time, obtained by chemical synthesisin six steps, starting from 2,4,6-trihydroxyacetophenone. Key stepsare a microwave-promoted tandem sequence of Claisen- and Cope-rearrangementsto install the 6-prenyl substituent and a Suzuki-Miyaura crosscoupling for installing the B-ring. By using various boronic acids,non-natural analogues become conveniently available. All compoundswere tested for cytotoxicity against drug-sensitive and drug-resistanthuman leukemia cell lines, but were found to be inactive. The compoundswere also tested for antimicrobial activities against a panel of eightGram-negative and two Gram-positive bacterial strains. Addition ofthe efflux pump inhibitor phenylalanine-arginine-beta-naphthylamide(PA beta N) significantly improved the antibiotic activity in mostcases, with MIC values as low as 2.5 mu M and activity improvementfactors as high as 128-fold.}, language = {en} } @article{KwesigaSperlichSchmidt2021, author = {Kwesiga, George and Sperlich, Eric and Schmidt, Bernd}, title = {Scope and applications of 2,3-oxidative aryl rearrangements for the synthesis of isoflavone natural products}, series = {The journal of organic chemistry}, volume = {86}, journal = {The journal of organic chemistry}, number = {15}, publisher = {American Chemical Society}, address = {Washington}, issn = {0022-3263}, doi = {10.1021/acs.joc.1c01375}, pages = {10699 -- 10712}, year = {2021}, abstract = {The reaction of flavanones with hypervalent iodine reagents was investigated with a view to the synthesis of naturally occurring isoflavones. In contrast to several previous reports in the literature, we did not observe the formation of any benzofurans via a ring contraction pathway, but could isolate only isoflavones, resulting from an oxidative 2,3-aryl rearrangement, and flavones, resulting from an oxidation of the flavanones. Although the 2,3-oxidative rearrangement allows a synthetically useful approach toward some isoflavone natural products due to the convenient accessibility of the required starting materials, the overall synthetic utility and generality of the reaction appear to be more limited than previous literature reports suggest.}, language = {en} } @article{KwesigaKellingKerstingetal.2020, author = {Kwesiga, George and Kelling, Alexandra and Kersting, Sebastian and Sperlich, Eric and von Nickisch-Rosenegk, Markus and Schmidt, Bernd}, title = {Total syntheses of prenylated isoflavones from Erythrina sacleuxii and their antibacterial activity}, series = {Journal of natural products}, volume = {83}, journal = {Journal of natural products}, number = {11}, publisher = {American Chemical Society}, address = {Washington}, issn = {0163-3864}, doi = {10.1021/acs.jnatprod.0c00932}, pages = {3445 -- 3453}, year = {2020}, abstract = {The prenylated isoflavones 5-deoxyprenylbiochanin A (7-hydroxy-4'-methoxy-3'-prenylisoflavone) and erysubin F (7,4'-dihydroxy-8,3'-diprenylisoflavone) were synthesized for the first time, starting from mono-or di-O-allylated chalcones, and the structure of 5-deoxy-3'-prenylbiochanin A was corroborated by single-crystal X-ray diffraction analysis. Flavanones are key intermediates in the synthesis. Their reaction with hypervalent iodine reagents affords isoflavones via a 2,3-oxidative rearrangement and the corresponding flavone isomers via 2,3-dehydrogenation. This enabled a synthesis of 7,4'-dihydroxy-8,3'-diprenylflavone, a non-natural regioisomer of erysubin F. Erysubin F (8), 7,4'-dihydroxy-8,3'-diprenylflavone (27), and 5-deoxy-3'prenylbiochanin A (7) were tested against three bacterial strains and one fungal pathogen. All three compounds are inactive against Salmonella enterica subsp. enterica (NCTC 13349), Escherichia coli (ATCC 25922), and Candida albicans (ATCC 90028), with MIC values greater than 80.0 mu M. The diprenylated natural product erysubin F (8) and its flavone isomer 7,4'-dihydroxy-8,3'diprenylflavone (27) show in vitro activity against methicillin-resistant Staphylococcus aureus (MRSA, ATCC 43300) at MIC values of 15.4 and 20.5 mu M, respectively. In contrast, the monoprenylated 5-deoxy-3'-prenylbiochanin A (7) is inactive against this MRSA strain.}, language = {en} } @article{KruegerBramborgKellingetal.2021, author = {Kr{\"u}ger, Tobias and Bramborg, Andrea and Kelling, Alexandra and Sperlich, Eric and Linker, Torsten}, title = {Birch Reduction of Arenes as an Easy Entry to γ-Spirolactones}, series = {European journal of organic chemistry}, volume = {2021}, journal = {European journal of organic chemistry}, number = {46}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1434-193X}, doi = {10.1002/ejoc.202101018}, pages = {6383 -- 6391}, year = {2021}, abstract = {A convenient method for the synthesis of γ-spirolactones in only 2-3 steps is described. Birch reduction of inexpensive and commercially available aromatic carboxylic acids in the presence of ethylene oxide affords hydroxy acids, which undergo direct lactonization during work-up. Suitable precursors are methyl-substituted benzoic acids, naphthoic, and dicarboxylic acids. Subsequent hydrogenation proceeds smoothly with Pd/C as catalyst and saturated γ-spirolactones are isolated in excellent yields and stereoselectivities. Thus, up to 3 new stereogenic centers can be constructed as sole diastereomers from achiral benzoic acids. Furthermore, it is possible to control the degree of saturation with Raney nickel or Wilkinson's catalyst to obtain products with 1 double bond. Overall, more than 30 new γ-spirolactones have been synthesized in analytically pure form.}, language = {en} } @article{KrauseSperlichSchmidt2021, author = {Krause, Andreas and Sperlich, Eric and Schmidt, Bernd}, title = {Matsuda-Heck arylation of itaconates}, series = {Organic \& biomolecular chemistry : an international journal of synthetic, physical and biomolecular organic chemistry}, volume = {19}, journal = {Organic \& biomolecular chemistry : an international journal of synthetic, physical and biomolecular organic chemistry}, number = {19}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1477-0520}, doi = {10.1039/d1ob00392e}, pages = {4292 -- 4302}, year = {2021}, abstract = {Itaconic acid esters and hemiesters undergo Pd-catalyzed coupling reactions with arene diazonium salts in high to excellent yields. The coupling products of ortho-nitro arene diazonium salts can be converted in one or two steps to benzazepine-2-ones.}, language = {en} } @article{FudickarMetzMaiLindeetal.2021, author = {Fudickar, Werner and Metz, Melanie and Mai-Linde, Yasemin and Kr{\"u}ger, Tobias and Kelling, Alexandra and Sperlich, Eric and Linker, Torsten}, title = {Influence of functional groups on the ene reaction of singlet oxygen with 1,4-cyclohexadienes}, series = {Photochemistry and photobiology : the official journal of the American Society for Photobiology}, volume = {97}, journal = {Photochemistry and photobiology : the official journal of the American Society for Photobiology}, number = {6}, publisher = {Wiley}, address = {Malden, Mass.}, issn = {0031-8655}, doi = {10.1111/php.13422}, pages = {1289 -- 1297}, year = {2021}, abstract = {The photooxygenation of 1,4-cyclohexadienes has been studied with a special focus on regio- and stereoselectivities. In all examples, only the methyl-substituted double bond undergoes an ene reaction with singlet oxygen, to afford hydroperoxides in moderate to good yields. We explain the high regioselectivities by a "large-group effect" of the adjacent quaternary stereocenter. Nitriles decrease the reactivity of singlet oxygen, presumably by quenching, but can stabilize proposed per-epoxide intermediates by polar interactions resulting in different stereoselectivities. Spiro lactams and lactones show an interesting effect on regio- and stereoselectivities of the ene reactions. Thus, singlet oxygen attacks the double bond preferentially anti to the carbonyl group, affording only one regioisomeric hydroperoxide. If the reaction occurs from the opposite face, the other regioisomer is exclusively formed by severe electrostatic repulsion in a perepoxide intermediate. We explain this unusual behavior by the fixed geometry of spiro compounds and call it a "spiro effect" in singlet oxygen ene reactions.}, language = {en} } @misc{BhattacharyyaBalischewskiSperlichetal.2023, author = {Bhattacharyya, Biswajit and Balischewski, Christian and Sperlich, Eric and G{\"u}nter, Christina and Mies, Stefan and Kelling, Alexandra and Taubert, Andreas}, title = {N-Butyl Pyridinium Diiodido Argentate(I)}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1341}, issn = {1866-8372}, doi = {10.25932/publishup-60487}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-604874}, pages = {7}, year = {2023}, abstract = {A new solid-state material, N-butyl pyridinium diiodido argentate(I), is synthesized using a simple and effective one-pot approach. In the solid state, the compound exhibits 1D ([AgI2](-))(n) chains that are stabilized by the N-butyl pyridinium cation. The 1D structure is further manifested by the formation of long, needle-like crystals, as revealed from electron microscopy. As the general composition is derived from metal halide-based ionic liquids, the compound has a low melting point of 100-101 degrees C, as confirmed by differential scanning calorimetry. Most importantly, the compound has a conductivity of 10(-6) S cm(-1) at room temperature. At higher temperatures the conductivity increases and reaches to 10(-4 )S cm(-1) at 70 degrees C. In contrast to AgI, however, the current material has a highly anisotropic 1D arrangement of the ionic domains. This provides direct and tuneable access to fast and anisotropic ionic conduction. The material is thus a significant step forward beyond current ion conductors and a highly promising prototype for the rational design of highly conductive ionic solid-state conductors for battery or solar cell applications.}, language = {en} } @article{BhattacharyyaBalischewskiSperlichetal.2023, author = {Bhattacharyya, Biswajit and Balischewski, Christian and Sperlich, Eric and G{\"u}nter, Christina and Mies, Stefan and Kelling, Alexandra and Taubert, Andreas}, title = {N-Butyl Pyridinium Diiodido Argentate(I)}, series = {Advanced materials interfaces}, volume = {10}, journal = {Advanced materials interfaces}, number = {12}, publisher = {Wiley}, address = {Hoboken}, issn = {2196-7350}, doi = {10.1002/admi.202202363}, pages = {7}, year = {2023}, abstract = {A new solid-state material, N-butyl pyridinium diiodido argentate(I), is synthesized using a simple and effective one-pot approach. In the solid state, the compound exhibits 1D ([AgI2](-))(n) chains that are stabilized by the N-butyl pyridinium cation. The 1D structure is further manifested by the formation of long, needle-like crystals, as revealed from electron microscopy. As the general composition is derived from metal halide-based ionic liquids, the compound has a low melting point of 100-101 degrees C, as confirmed by differential scanning calorimetry. Most importantly, the compound has a conductivity of 10(-6) S cm(-1) at room temperature. At higher temperatures the conductivity increases and reaches to 10(-4 )S cm(-1) at 70 degrees C. In contrast to AgI, however, the current material has a highly anisotropic 1D arrangement of the ionic domains. This provides direct and tuneable access to fast and anisotropic ionic conduction. The material is thus a significant step forward beyond current ion conductors and a highly promising prototype for the rational design of highly conductive ionic solid-state conductors for battery or solar cell applications.}, language = {en} } @misc{BehrensBalischewskiSperlichetal.2022, author = {Behrens, Karsten and Balischewski, Christian and Sperlich, Eric and Menski, Antonia Isabell and Balderas-Valadez, Ruth Fabiola and Pacholski, Claudia and G{\"u}nter, Christina and Lubahn, Susanne and Kelling, Alexandra and Taubert, Andreas}, title = {Mixed chloridometallate(ii) ionic liquids with tunable color and optical response for potential ammonia sensors}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1316}, issn = {1866-8372}, doi = {10.25932/publishup-58751}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-587512}, pages = {35072 -- 35082}, year = {2022}, abstract = {Eight d-metal-containing N-butylpyridinium ionic liquids (ILs) with the nominal composition (C4Py)2[Ni0.5M0.5Cl4] or (C4Py)2[Zn0.5M0.5Cl4] (M = Cu, Co, Mn, Ni, Zn; C4Py = N-butylpyridinium) were synthesized, characterized, and investigated for their optical properties. Single crystal and powder X-ray analysis shows that the compounds are isostructural to existing examples based on other d-metal ions. Inductively coupled plasma optical emission spectroscopy measurements confirm that the metal/metal ratio is around 50 : 50. UV-Vis spectroscopy shows that the optical absorption can be tuned by selection of the constituent metals. Moreover, the compounds can act as an optical sensor for the detection of gases such as ammonia as demonstrated via a simple prototype setup.}, language = {en} } @article{BehrensBalischewskiSperlichetal.2022, author = {Behrens, Karsten and Balischewski, Christian and Sperlich, Eric and Menski, Antonia Isabell and Balderas-Valadez, Ruth Fabiola and Pacholski, Claudia and G{\"u}nter, Christina and Lubahn, Susanne and Kelling, Alexandra and Taubert, Andreas}, title = {Mixed chloridometallate(ii) ionic liquids with tunable color and optical response for potential ammonia sensors}, series = {RSC Advances}, volume = {12}, journal = {RSC Advances}, publisher = {RSC}, address = {London}, issn = {2046-2069}, doi = {10.1039/d2ra05581c}, pages = {35072 -- 35082}, year = {2022}, abstract = {Eight d-metal-containing N-butylpyridinium ionic liquids (ILs) with the nominal composition (C4Py)2[Ni0.5M0.5Cl4] or (C4Py)2[Zn0.5M0.5Cl4] (M = Cu, Co, Mn, Ni, Zn; C4Py = N-butylpyridinium) were synthesized, characterized, and investigated for their optical properties. Single crystal and powder X-ray analysis shows that the compounds are isostructural to existing examples based on other d-metal ions. Inductively coupled plasma optical emission spectroscopy measurements confirm that the metal/metal ratio is around 50 : 50. UV-Vis spectroscopy shows that the optical absorption can be tuned by selection of the constituent metals. Moreover, the compounds can act as an optical sensor for the detection of gases such as ammonia as demonstrated via a simple prototype setup.}, language = {en} }