@article{WolffSchuelerGastetal.2020, author = {Wolff, Martin and Sch{\"u}ler, Anja and Gast, Klaus and Seckler, Robert and Evers, Andreas and Pfeiffer-Marek, Stefania and Kurz, Michael and Nagel, Norbert and Haack, Torsten and Wagner, Michael and Thalhammer, Anja}, title = {Self-Assembly of Exendin-4-Derived Dual Peptide Agonists is Mediated by Acylation and Correlated to the Length of Conjugated Fatty Acyl Chains}, series = {Molecular pharmaceutics}, volume = {17}, journal = {Molecular pharmaceutics}, number = {3}, publisher = {American Chemical Society}, address = {Washington}, issn = {1543-8384}, doi = {10.1021/acs.molpharmaceut.9b01195}, pages = {965 -- 978}, year = {2020}, abstract = {Dual glucagon-like peptide-1/glucagon receptor agonists have emerged as promising candidates for the treatment of diabetes and obesity. Issues of degradation sensitivity and rapid renal clearance are addressed, for example, by the conjugation of peptides to fatty acid chains, promoting reversible albumin binding. We use combined dynamic and static light scattering to directly measure the self-assembly of a set of dual peptide agonists based on the exendin-4 structure with varying fatty acid chain lengths in terms of apparent molecular mass and hydrodynamic radius (R-S). We use NMR spectroscopy to gain an insight into the molecular architecture of the assembly. We investigate conformational changes of the monomeric subunits resulting from peptide self-assembly and assembly stability as a function of the fatty acid chain length using circular dichroism and fluorescence spectroscopy. Our results demonstrate that self-assembly of the exendin-4-derived dual agonist peptides is essentially driven by hydrophobic interactions involving the conjugated acyl chains. The fatty acid chain length affects assembly equilibria and the assembly stability, although the peptide subunits in the assembly retain a dynamic secondary structure. The assembly architecture is characterized by juxtaposition of the fatty acyl side chains and a hydrophobic cluster of the peptide moiety. This cluster experiences local conformational changes in the assembly compared to the monomeric unit leading to a reduction in solvent exposure. The N-terminal half of the peptide and a C-terminal loop are not in contact with neighboring peptide subunits in the assemblies. Altogether, our study contributes to a thorough understanding of the association characteristics and the tendency toward self-assembly in response to lipidation. This is important not only to achieve the desired bioavailability but also with respect to the physical stability of peptide solutions.}, language = {en} } @article{WolffSchuelerGastetal.2020, author = {Wolff, Martin and Sch{\"u}ler, Anja and Gast, Klaus and Seckler, Robert and Evers, Andreas and Pfeiffer-Marek, Stefania and Kurz, Michael and Nagel, Norbert and Haack, Torsten and Wagner, Michael and Thalhammer, Anja}, title = {Self-Assembly of Exendin-4-Derived Dual Peptide Agonists is Mediated by Acylation and Correlated to the Length of Conjugated Fatty Acyl Chains}, series = {Molecular pharmaceutics}, volume = {17}, journal = {Molecular pharmaceutics}, number = {3}, publisher = {American Chemical Society}, address = {Washington}, issn = {1543-8384}, doi = {10.1021/acs.molpharmaceut.9b01195}, pages = {965 -- 978}, year = {2020}, abstract = {Dual glucagon-like peptide-1/glucagon receptor agonists have emerged as promising candidates for the treatment of diabetes and obesity. Issues of degradation sensitivity and rapid renal clearance are addressed, for example, by the conjugation of peptides to fatty acid chains, promoting reversible albumin binding. We use combined dynamic and static light scattering to directly measure the self-assembly of a set of dual peptide agonists based on the exendin-4 structure with varying fatty acid chain lengths in terms of apparent molecular mass and hydrodynamic radius (R-S). We use NMR spectroscopy to gain an insight into the molecular architecture of the assembly. We investigate conformational changes of the monomeric subunits resulting from peptide self-assembly and assembly stability as a function of the fatty acid chain length using circular dichroism and fluorescence spectroscopy. Our results demonstrate that self-assembly of the exendin-4-derived dual agonist peptides is essentially driven by hydrophobic interactions involving the conjugated acyl chains. The fatty acid chain length affects assembly equilibria and the assembly stability, although the peptide subunits in the assembly retain a dynamic secondary structure. The assembly architecture is characterized by juxtaposition of the fatty acyl side chains and a hydrophobic cluster of the peptide moiety. This cluster experiences local conformational changes in the assembly compared to the monomeric unit leading to a reduction in solvent exposure. The N-terminal half of the peptide and a C-terminal loop are not in contact with neighboring peptide subunits in the assemblies. Altogether, our study contributes to a thorough understanding of the association characteristics and the tendency toward self-assembly in response to lipidation. This is important not only to achieve the desired bioavailability but also with respect to the physical stability of peptide solutions.}, language = {en} } @article{GastSchuelerWolffetal.2017, author = {Gast, Klaus and Sch{\"u}ler, Anja and Wolff, Martin and Thalhammer, Anja and Berchtold, Harald and Nagel, Norbert and Lenherr, Gudrun and Hauck, Gerrit and Seckler, Robert}, title = {Rapid-acting and human insulins}, series = {Pharmaceutical research}, volume = {34}, journal = {Pharmaceutical research}, number = {795}, publisher = {Springer}, address = {New York}, issn = {0724-8741}, doi = {10.1007/s11095-017-2233-0}, pages = {2270 -- 2286}, year = {2017}, abstract = {Comparison of the dissociation kinetics of rapid-acting insulins lispro, aspart, glulisine and human insulin under physiologically relevant conditions. Dissociation kinetics after dilution were monitored directly in terms of the average molecular mass using combined static and dynamic light scattering. Changes in tertiary structure were detected by near-UV circular dichroism. Glulisine forms compact hexamers in formulation even in the absence of Zn2+. Upon severe dilution, these rapidly dissociate into monomers in less than 10 s. In contrast, in formulations of lispro and aspart, the presence of Zn2+ and phenolic compounds is essential for formation of compact R6 hexamers. These slowly dissociate in times ranging from seconds to one hour depending on the concentration of phenolic additives. The disadvantage of the long dissociation times of lispro and aspart can be diminished by a rapid depletion of the concentration of phenolic additives independent of the insulin dilution. This is especially important in conditions similar to those after subcutaneous injection, where only minor dilution of the insulins occurs. Knowledge of the diverging dissociation mechanisms of lispro and aspart compared to glulisine will be helpful for optimizing formulation conditions of rapid-acting insulins.}, language = {en} } @misc{GastSchuelerWolffetal.2017, author = {Gast, Klaus and Sch{\"u}ler, Anja and Wolff, Martin and Thalhammer, Anja and Berchtold, Harald and Nagel, Norbert and Lenherr, Gudrun and Hauck, Gerrit and Seckler, Robert}, title = {Rapid-acting and human insulins}, series = {Postprints der Universit{\"a}t Potsdam Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam Mathematisch-Naturwissenschaftliche Reihe}, number = {795}, issn = {1866-8372}, doi = {10.25932/publishup-43157}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-431572}, pages = {2270 -- 2286}, year = {2017}, abstract = {Purpose: Comparison of the dissociation kinetics of rapid-acting insulins lispro, aspart, glulisine and human insulin under physiologically relevant conditions. Methods: Dissociation kinetics after dilution were monitored directly in terms of the average molecular mass using combined static and dynamic light scattering. Changes in tertiary structure were detected by near-UV circular dichroism. Results: Glulisine forms compact hexamers in formulation even in the absence of Zn2+. Upon severe dilution, these rapidly dissociate into monomers in less than 10 s. In contrast, in formulations of lispro and aspart, the presence of Zn2+ and phenolic compounds is essential for formation of compact R6 hexamers. These slowly dissociate in times ranging from seconds to one hour depending on the concentration of phenolic additives. The disadvantage of the long dissociation times of lispro and aspart can be diminished by a rapid depletion of the concentration of phenolic additives independent of the insulin dilution. This is especially important in conditions similar to those after subcutaneous injection, where only minor dilution of the insulins occurs. Conclusion: Knowledge of the diverging dissociation mechanisms of lispro and aspart compared to glulisine will be helpful for optimizing formulation conditions of rapid-acting insulins.}, language = {en} }