@article{FuehnerKlieglArntzetal.2020, author = {F{\"u}hner, Thea Heidi and Kliegl, Reinhold and Arntz, Fabian and Kriemler, Susi and Granacher, Urs}, title = {An update on secular trends in physical fitness of children and adolescents from 1972 to 2015}, series = {Sports medicine}, volume = {51}, journal = {Sports medicine}, number = {2}, publisher = {Springer}, address = {Northcote}, issn = {0112-1642}, doi = {10.1007/s40279-020-01373-x}, pages = {303 -- 320}, year = {2020}, abstract = {Background There is evidence that physical fitness of children and adolescents (particularly cardiorespiratory endurance) has declined globally over the past decades. Ever since the first reports on negative trends in physical fitness, efforts have been undertaken by for instance the World Health Organization (WHO) to promote physical activity and fitness in children and adolescents. Therefore, it is timely to re-analyze the literature to examine whether previous reports on secular declines in physical fitness are still detectable or whether they need to be updated. Objectives The objective of this systematic review is to provide an 'update' on secular trends in selected components of physical fitness (i.e., cardiorespiratory endurance, relative muscle strength, proxies of muscle power, speed) in children and adolescents aged 6-18 years. Data Sources A systematic computerized literature search was conducted in the electronic databases PubMed and Web of Science to locate studies that explicitly reported secular trends in physical fitness of children and adolescents. Study Eligibility Criteria Studies were included in this systematic review if they examined secular trends between at least two time points across a minimum of 5 years. In addition, they had to document secular trends in any measure of cardiorespiratory endurance, relative muscle strength, proxies of muscle power or speed in apparently healthy children and adolescents aged 6-18 years. Study Appraisal and Synthesis Methods The included studies were coded for the following criteria: nation, physical fitness component (cardiorespiratory endurance, relative muscle strength, proxies of muscle power, speed), chronological age, sex (boys vs. girls), and year of assessment. Scores were standardized (i.e., converted to z scores) with sample-weighted means and standard deviations, pooled across sex and year of assessment within cells defined by study, test, and children's age. Results The original search identified 524 hits. In the end, 22 studies met the inclusion criteria for review. The observation period was between 1972 and 2015. Fifteen of the 22 studies used tests for cardiorespiratory endurance, eight for relative muscle strength, eleven for proxies of muscle power, and eight for speed. Measures of cardiorespiratory endurance exhibited a large initial increase and an equally large subsequent decrease, but the decrease appears to have reached a floor for all children between 2010 and 2015. Measures of relative muscle strength showed a general trend towards a small increase. Measures of proxies of muscle power indicated an overall small negative quadratic trend. For measures of speed, a small-to-medium increase was observed in recent years. Limitations Biological maturity was not considered in the analysis because biological maturity was not reported in most included studies. Conclusions Negative secular trends were particularly found for cardiorespiratory endurance between 1986 and 2010-12, irrespective of sex. Relative muscle strength and speed showed small increases while proxies of muscle power declined. Although the negative trend in cardiorespiratory endurance appears to have reached a floor in recent years, because of its association with markers of health, we recommend further initiatives in PA and fitness promotion for children and adolescents. More specifically, public health efforts should focus on exercise that increases cardiorespiratory endurance to prevent adverse health effects (i.e.
, overweight and obesity) and muscle strength to lay a foundation for motor skill learning.}, language = {en} } @misc{ArntzMkaouerMarkovetal.2022, author = {Arntz, Fabian and Mkaouer, Bessem and Markov, Adrian and Schoenfeld, Brad and Moran, Jason and Ramirez-Campillo, Rodrigo and Behrens, Martin and Baumert, Philipp and Erskine, Robert M. and Hauser, Lukas and Chaabene, Helmi}, title = {Effect of Plyometric Jump Training on Skeletal Muscle Hypertrophy in Healthy Individuals: A Systematic Review With Multilevel Meta-Analysis}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, issn = {1866-8364}, doi = {10.25932/publishup-56316}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-563165}, pages = {1 -- 17}, year = {2022}, abstract = {Objective: To examine the effect of plyometric jump training on skeletal muscle hypertrophy in healthy individuals. Methods: A systematic literature search was conducted in the databases PubMed, SPORTDiscus, Web of Science, and Cochrane Library up to September 2021. Results: Fifteen studies met the inclusion criteria. The main overall finding (44 effect sizes across 15 clusters median = 2, range = 1-15 effects per cluster) indicated that plyometric jump training had small to moderate effects [standardised mean difference (SMD) = 0.47 (95\% CIs = 0.23-0.71); p < 0.001] on skeletal muscle hypertrophy. Subgroup analyses for training experience revealed trivial to large effects in non-athletes [SMD = 0.55 (95\% CIs = 0.18-0.93); p = 0.007] and trivial to moderate effects in athletes [SMD = 0.33 (95\% CIs = 0.16-0.51); p = 0.001]. Regarding muscle groups, results showed moderate effects for the knee extensors [SMD = 0.72 (95\% CIs = 0.66-0.78), p < 0.001] and equivocal effects for the plantar flexors [SMD = 0.65 (95\% CIs = -0.25-1.55); p = 0.143]. As to the assessment methods of skeletal muscle hypertrophy, findings indicated trivial to small effects for prediction equations [SMD = 0.29 (95\% CIs = 0.16-0.42); p < 0.001] and moderate-to-large effects for ultrasound imaging [SMD = 0.74 (95\% CIs = 0.59-0.89); p < 0.001]. Meta-regression analysis indicated that the weekly session frequency moderates the effect of plyometric jump training on skeletal muscle hypertrophy, with a higher weekly session frequency inducing larger hypertrophic gains [β = 0.3233 (95\% CIs = 0.2041-0.4425); p < 0.001]. We found no clear evidence that age, sex, total training period, single session duration, or the number of jumps per week moderate the effect of plyometric jump training on skeletal muscle hypertrophy [β = -0.0133 to 0.0433 (95\% CIs = -0.0387 to 0.1215); p = 0.101-0.751]. Conclusion: Plyometric jump training can induce skeletal muscle hypertrophy, regardless of age and sex. There is evidence for relatively larger effects in non-athletes compared with athletes. Further, the weekly session frequency seems to moderate the effect of plyometric jump training on skeletal muscle hypertrophy, whereby more frequent weekly plyometric jump training sessions elicit larger hypertrophic adaptations.}, language = {en} } @article{ArntzMkaouerMarkovetal.2022, author = {Arntz, Fabian and Mkaouer, Bessem and Markov, Adrian and Schoenfeld, Brad and Moran, Jason and Ramirez-Campillo, Rodrigo and Behrens, Martin and Baumert, Philipp and Erskine, Robert M. and Hauser, Lukas and Chaabene, Helmi}, title = {Effect of Plyometric Jump Training on Skeletal Muscle Hypertrophy in Healthy Individuals: A Systematic Review With Multilevel Meta-Analysis}, series = {Frontiers in Physiology}, volume = {13}, journal = {Frontiers in Physiology}, edition = {888464}, publisher = {Frontiers}, address = {Lausanne, Schweiz}, issn = {1664-042X}, doi = {10.3389/fphys.2022.888464}, pages = {1 -- 17}, year = {2022}, abstract = {Objective: To examine the effect of plyometric jump training on skeletal muscle hypertrophy in healthy individuals. Methods: A systematic literature search was conducted in the databases PubMed, SPORTDiscus, Web of Science, and Cochrane Library up to September 2021. Results: Fifteen studies met the inclusion criteria. The main overall finding (44 effect sizes across 15 clusters median = 2, range = 1-15 effects per cluster) indicated that plyometric jump training had small to moderate effects [standardised mean difference (SMD) = 0.47 (95\% CIs = 0.23-0.71); p < 0.001] on skeletal muscle hypertrophy. Subgroup analyses for training experience revealed trivial to large effects in non-athletes [SMD = 0.55 (95\% CIs = 0.18-0.93); p = 0.007] and trivial to moderate effects in athletes [SMD = 0.33 (95\% CIs = 0.16-0.51); p = 0.001]. Regarding muscle groups, results showed moderate effects for the knee extensors [SMD = 0.72 (95\% CIs = 0.66-0.78), p < 0.001] and equivocal effects for the plantar flexors [SMD = 0.65 (95\% CIs = -0.25-1.55); p = 0.143]. As to the assessment methods of skeletal muscle hypertrophy, findings indicated trivial to small effects for prediction equations [SMD = 0.29 (95\% CIs = 0.16-0.42); p < 0.001] and moderate-to-large effects for ultrasound imaging [SMD = 0.74 (95\% CIs = 0.59-0.89); p < 0.001]. Meta-regression analysis indicated that the weekly session frequency moderates the effect of plyometric jump training on skeletal muscle hypertrophy, with a higher weekly session frequency inducing larger hypertrophic gains [β = 0.3233 (95\% CIs = 0.2041-0.4425); p < 0.001]. We found no clear evidence that age, sex, total training period, single session duration, or the number of jumps per week moderate the effect of plyometric jump training on skeletal muscle hypertrophy [β = -0.0133 to 0.0433 (95\% CIs = -0.0387 to 0.1215); p = 0.101-0.751]. Conclusion: Plyometric jump training can induce skeletal muscle hypertrophy, regardless of age and sex. There is evidence for relatively larger effects in non-athletes compared with athletes. Further, the weekly session frequency seems to moderate the effect of plyometric jump training on skeletal muscle hypertrophy, whereby more frequent weekly plyometric jump training sessions elicit larger hypertrophic adaptations.}, language = {en} } @phdthesis{Arntz2023, author = {Arntz, Fabian}, title = {Intervention and moderation of physical fitness in children with physical fitness deficits - Results of the SMaRTER study}, doi = {10.25932/publishup-62260}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-622607}, school = {Universit{\"a}t Potsdam}, pages = {169}, year = {2023}, abstract = {Background: Physical fitness is a key aspect of children's ability to perform activities of daily living, engage in leisure activities, and is associated with important health characteristics. As such, it shows multi-directional associations with weight status as well as executive functions, and varies according to a variety of moderating factors, such as the child's gender, age, geographical location, and socioeconomic conditions and context. The assessment and monitoring of children's physical fitness has gained attention in recent decades, as has the question of how to promote physical fitness through the implementation of a variety of programs and interventions. However, these programs and interventions rarely focus on children with deficits in their physical fitness. Due to their deficits, these children are at the highest risk of suffering health impairments compared to their more average fit peers. In efforts to promote physical fitness, schools could offer promising and viable approaches to interventions, as they provide access to large youth populations while providing useful infrastructure. Evidence suggests that school-based physical fitness interventions, particularly those that include supplementary physical education, are useful for promoting and improving physical fitness in children with normal fitness. However, there is little evidence on whether these interventions have similar or even greater effects on children with deficits in their physical fitness. Furthermore, the question arises whether these measures help to sustainably improve the development/trajectories of physical fitness in these children. The present thesis aims to elucidate the following four objectives: (1) to evaluate the effects of a 14 week intervention with 2 x 45 minutes per week additional remedial physical education on physical fitness and executive function in children with deficits in their physical fitness; (2) to assess moderating effects of body height and body mass on physical fitness components in children with physical fitness deficits; (3) to assess moderating effects of age and skeletal growth on physical fitness in children with physical fitness deficits; and (4) to analyse moderating effects of different physical fitness components on executive function in children with physical fitness deficits. Methods: Using physical fitness data from the EMOTIKON study, 76 third graders with physical fitness deficits were identified in 11 schools in Brandenburg state that met the requirements for implementing a remedial physical education intervention (i.e., employing specially trained physical education teachers). The fitness intervention was implemented in a cross-over design and schools were randomly assigned to either an intervention-control or control-intervention group. The remedial physical education intervention consisted of a 14 week, 2 x 45 minutes per week remedial physical education curriculum supplemented by a physical exercise homework program. Assessments were conducted at the beginning and end of each intervention and control period, and further assessments were conducted at the beginning and end of each school year until the end of sixth grade. Physical fitness as the primary outcome was assessed using fitness tests implemented in the EMOTIKON study (i.e., lower body muscular strength (standing long jump), speed (20 m sprint), cardiorespiratory fitness (6 min run), agility (star run), upper body muscular strength (ball push test), and balance (one leg balance)). Executive functions as a secondary outcome were assessed using attention and psychomotor processing speed (digit symbol substitution test), mental flexibility and fine motor skills (trail making test), and inhibitory control (Simon task). Anthropometric measures such as body height, body mass, maturity offset, and body composition parameters, as well as socioeconomic information were recorded as potential moderators. Results: (1) The evaluation of possible effects of the remedial physical education intervention on physical fitness and executive functions of children with deficits in their physical fitness did not reveal any detectable intervention-related improvements in physical fitness or executive functions. The implemented analysis strategies also showed moderating effects of body mass index (BMI) on performance in 6 min run, star run, and standing long jump, with children with a lower BMI performing better, moderating effects of proximity to Berlin on performance in the 6 min run and standing long jump, better performances being found in children living closer to Berlin, and overall gendered differences in executive function test performance, with boys performing better compared to girls. (2) Analysing moderating effects of body height and body mass on physical fitness performance, better overall physical fitness performance was found for taller children. For body mass, a negative effect was found on performance in the 6 min run (linear), standing long jump (linear), and 20 m sprint (quadratic), with better performance associated with lighter children, and a positive effect of body mass on performance in the ball push test, with heavier children performing better. In addition, the analysis revealed significant interactions between body height and body mass on performance in 6 min run and 20 m sprint, with higher body mass being associated with performance improvements in larger children, while higher body mass was associated with performance declines in smaller children. In addition, the analysis revealed overall age-related improvements in physical fitness and was able to show that children with better overall physical fitness also elicit greater age-related improvements. (3) In the analysis of moderating effects of age and maturity offset on physical fitness performances, two unrotated principal components of z-transformed age and maturity offset values were calculated (i.e., relative growth = (age + maturity offset)/2; growth delay = (age - maturity offset)) to avoid colinearity. Analysing these constructs revealed positive effects of relative growth on performances in star run, 20 m sprint, and standing long jump, with children of higher relative growth performing better. For growth delay, positive effects were found on performances in 6 min run and 20 m sprint, with children having larger growth delays showing better performances. Further, the model revealed gendered differences in 6 min run and 20 m sprint performances with girls performing better than boys. (4) Analysing the effects of physical fitness tests on executive function revealed a positive effect of star run and one leg balance performance and a negative effect of 6 min run performance on reaction speed in the Simon task. However, these effects were not detectable when individual differences were accounted for. Then these effects showed overall positive effects, with better performances being associated with faster reaction speeds. In addition, the analysis revealed a positive correlation between overall reaction speed and effects of the 6 min run, suggesting that children with greater effects of 6 min run had faster overall reaction speeds. Negative correlations were found between star run effects and age effects on Simon task reaction speed, meaning that children with larger star run effects had smaller age effects, and between 6 min run effects and star run effects on Simon task reaction speed, meaning that children with larger 6 min run effects tended to have smaller star run effects on Simon task reaction speed and vice versa. Conclusions: (1) The lack of detectable intervention-related effects could have been caused by an insufficient intervention period, by the implementation of comprehensive and thus non- specific exercises, or by both. Accordingly, longer intervention periods and/or more specific exercises may have been more beneficial and could have led to detectable improvements in physical fitness and/or executive function. However, it remains unclear whether these interventions can benefit children with deficits in physical fitness, as it is possible that their deficits are not caused by a mere lack of exercise, but rather depend on the socioeconomic conditions of the children and their families and areas. Therefore, further research is needed to assess the moderation of physical fitness in children with physical fitness deficits and, in particular, the links between children's environment and their physical fitness trajectories. (2) Findings from this work suggest that using BMI as a composite of body height and body mass may not be able to capture the variation associated with these parameters and their interactions. In particular, because of their multidirectional associations, further research would help elucidate how BMI and its subcomponents influence physical fitness and how they vary between children with and without physical fitness deficits. (3) The assessment of growth- related changes indicated negative effects associated with the growth spurt approaching age of peak height velocity, and furthermore showed significant differences in these effects between children. Thus, these effects and possible interindividual differences should be considered in the assessment of the development of physical fitness in children. (4) Furthermore, this work has shown that the associations between physical fitness and executive functions vary between children and may be moderated by children's socioeconomic conditions and the structure of their daily activities. Further research is needed to explore these associations using approaches that account for individual variance.}, language = {en} }