@phdthesis{Zass2021, author = {Zass, Alexander}, title = {A multifaceted study of marked Gibbs point processes}, doi = {10.25932/publishup-51277}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-512775}, school = {Universit{\"a}t Potsdam}, pages = {vii, 104}, year = {2021}, abstract = {This thesis focuses on the study of marked Gibbs point processes, in particular presenting some results on their existence and uniqueness, with ideas and techniques drawn from different areas of statistical mechanics: the entropy method from large deviations theory, cluster expansion and the Kirkwood--Salsburg equations, the Dobrushin contraction principle and disagreement percolation. We first present an existence result for infinite-volume marked Gibbs point processes. More precisely, we use the so-called entropy method (and large-deviation tools) to construct marked Gibbs point processes in R^d under quite general assumptions. In particular, the random marks belong to a general normed space S and are not bounded. Moreover, we allow for interaction functionals that may be unbounded and whose range is finite but random. The entropy method relies on showing that a family of finite-volume Gibbs point processes belongs to sequentially compact entropy level sets, and is therefore tight. We then present infinite-dimensional Langevin diffusions, that we put in interaction via a Gibbsian description. In this setting, we are able to adapt the general result above to show the existence of the associated infinite-volume measure. We also study its correlation functions via cluster expansion techniques, and obtain the uniqueness of the Gibbs process for all inverse temperatures β and activities z below a certain threshold. This method relies in first showing that the correlation functions of the process satisfy a so-called Ruelle bound, and then using it to solve a fixed point problem in an appropriate Banach space. The uniqueness domain we obtain consists then of the model parameters z and β for which such a problem has exactly one solution. Finally, we explore further the question of uniqueness of infinite-volume Gibbs point processes on R^d, in the unmarked setting. We present, in the context of repulsive interactions with a hard-core component, a novel approach to uniqueness by applying the discrete Dobrushin criterion to the continuum framework. We first fix a discretisation parameter a>0 and then study the behaviour of the uniqueness domain as a goes to 0. With this technique we are able to obtain explicit thresholds for the parameters z and β, which we then compare to existing results coming from the different methods of cluster expansion and disagreement percolation. Throughout this thesis, we illustrate our theoretical results with various examples both from classical statistical mechanics and stochastic geometry.}, language = {en} } @phdthesis{Nehring2012, author = {Nehring, Benjamin}, title = {Point processes in statistical mechanics : a cluster expansion approach}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-62682}, school = {Universit{\"a}t Potsdam}, year = {2012}, abstract = {A point process is a mechanism, which realizes randomly locally finite point measures. One of the main results of this thesis is an existence theorem for a new class of point processes with a so called signed Levy pseudo measure L, which is an extension of the class of infinitely divisible point processes. The construction approach is a combination of the classical point process theory, as developed by Kerstan, Matthes and Mecke, with the method of cluster expansions from statistical mechanics. Here the starting point is a family of signed Radon measures, which defines on the one hand the Levy pseudo measure L, and on the other hand locally the point process. The relation between L and the process is the following: this point process solves the integral cluster equation determined by L. We show that the results from the classical theory of infinitely divisible point processes carry over in a natural way to the larger class of point processes with a signed Levy pseudo measure. In this way we obtain e.g. a criterium for simplicity and a characterization through the cluster equation, interpreted as an integration by parts formula, for such point processes. Our main result in chapter 3 is a representation theorem for the factorial moment measures of the above point processes. With its help we will identify the permanental respective determinantal point processes, which belong to the classes of Boson respective Fermion processes. As a by-product we obtain a representation of the (reduced) Palm kernels of infinitely divisible point processes. In chapter 4 we see how the existence theorem enables us to construct (infinitely extended) Gibbs, quantum-Bose and polymer processes. The so called polymer processes seem to be constructed here for the first time. In the last part of this thesis we prove that the family of cluster equations has certain stability properties with respect to the transformation of its solutions. At first this will be used to show how large the class of solutions of such equations is, and secondly to establish the cluster theorem of Kerstan, Matthes and Mecke in our setting. With its help we are able to enlarge the class of Polya processes to the so called branching Polya processes. The last sections of this work are about thinning and splitting of point processes. One main result is that the classes of Boson and Fermion processes remain closed under thinning. We use the results on thinning to identify a subclass of point processes with a signed Levy pseudo measure as doubly stochastic Poisson processes. We also pose the following question: Assume you observe a realization of a thinned point process. What is the distribution of deleted points? Surprisingly, the Papangelou kernel of the thinning, besides a constant factor, is given by the intensity measure of this conditional probability, called splitting kernel.}, language = {en} }