@article{KrmičekTimmermanZiemannetal.2020, author = {Krm{\´i}ček, Luk{\´a}š and Timmerman, Martin Jan and Ziemann, Martin Andreas and Sudo, Masafumi and Ulrych, Jaromir}, title = {40Ar/39Ar step-heating dating of phlogopite and kaersutite megacrysts from the Železn{\´a} hůrka (Eisenb{\"u}hl) Pleistocene scoria cone, Czech Republic}, series = {Geologica Carpathica}, volume = {71}, journal = {Geologica Carpathica}, number = {4}, publisher = {Veda}, address = {Bratislava}, issn = {1335-0552}, doi = {10.31577/GeolCarp.71.4.6}, pages = {382 -- 387}, year = {2020}, abstract = {(40)A/Ar-39 step-heating of mica and amphibole megacrysts from hauyne-bearing olivine melilitite scoria/tephra from the Zelezna hurka yielded a 435 +/- 108 ka isotope correlation age for phlogopite and a more imprecise 1.55 Ma total gas age of the kaersutite megacryst. The amphibole megacrysts may constitute the first, and the younger phlogopite megacrysts the later phase of mafic, hydrous melilitic magma crystallization. It cannot be ruled out that the amphibole megacrysts are petrogenetically unrelated to tephra and phlogopite megacrysts and were derived from mantle xenoliths or disaggregated older, deep crustal pegmatites. This is in line both with the rarity of amphibole at Zelezna hurka and with the observed signs of magmatic resorption at the edges of amphibole crystals.}, language = {en} } @article{BalaganskyTimmermanKozlovaetal.2001, author = {Balagansky, V. V. and Timmerman, Martin Jan and Kozlova, N. Ye. and Kisilitsyn, R. V.}, title = {A 2.44 Ga old mafic dyke swarm in the Kolvitsa Belt, Kola Peninsula, Russia: implications for the early Palaeoproterozoic tectonics in the north-eastern Fennoscandian Shield}, year = {2001}, language = {en} } @article{PrachtTimmerman2004, author = {Pracht, M. and Timmerman, Martin Jan}, title = {A late Namurian (318 Ma) 40Ar-39Ar age for kaersutite megacrysts from the syn-tectonic Black Ball Head diatreme: implications for the onset of Variscan deformation in SW Ireland}, issn = {0790-1763}, year = {2004}, language = {en} } @article{BridgwaterScottBalaganskyetal.2001, author = {Bridgwater, D. and Scott, D. J. and Balagansky, V. V. and Timmerman, Martin Jan and Marker, Michael and Bushmin, S. S. and Alexeyev, N. L. and Daly, J. S.}, title = {Age and provenance of early Precambrian metasedimentary rocks in the Lapland-Kola Belt, Russia : evidence from Pb and Nd isotopic data}, year = {2001}, language = {en} } @misc{TerbishalievaTimmermanMikolaichuketal.2021, author = {Terbishalieva, Baiansuluu and Timmerman, Martin Jan and Mikolaichuk, Alexander and Altenberger, Uwe and Slama, Jiri and Schleicher, Anja Maria and Sudo, Masafumi and Sobel, Edward and Cichy, Sarah Bettina}, title = {Calc-alkaline volcanic rocks and zircon ages of the late Tonian}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1}, issn = {1437-3254}, doi = {10.25932/publishup-56958}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-569585}, pages = {25}, year = {2021}, abstract = {The Big Naryn Complex (BNC) in the East Djetim-Too Range of the Kyrgyz Middle Tianshan block is a tectonized, at least 2 km thick sequence of predominantly felsic to intermediate volcanic rocks intruded by porphyric rhyolite sills. It overlies a basement of metamorphic rocks and is overlain by late Neoproterozoic Djetim-Too Formation sediments; these also occur as tectonic intercalations in the BNC. The up to ca. 1100 m thick Lower Member is composed of predominantly rhyolites-to-dacites and minor basalts, while the at least 900 m thick pyroclastic Upper Member is dominated by rhyolitic-to-dacitic ignimbrites. Porphyric rhyolite sills are concentrated at the top of the Lower Member. A Lower Member rhyolite and a sill sample have LA-ICP-MS U-Pb zircon crystallization ages of 726.1 +/- 2.2 Ma and 720.3 +/- 6.5 Ma, respectively, showing that most of the magmatism occurred within a short time span in the late Tonian-early Cryogenian. Inherited zircons in the sill sample have Neoarchean (2.63, 2.64 Ga), Paleo- (2.33-1.81 Ga), Meso- (1.55 Ga), and Neoproterozoic (ca. 815 Ma) ages, and were derived from a heterogeneous Kuilyu Complex basement. A 1751 +/- 7 Ma Ar-40/Ar-39 age for amphibole from metagabbro is the age of cooling subsequent to Paleoproterozoic metamorphism of the Kuilyu Complex. The large amount of pyroclastic rocks, and their major and trace element compositions, the presence of Neoarchean to Neoproterozoic inherited zircons and a depositional basement of metamorphic rocks point to formation of the BNC in a continental magmatic arc setting.}, language = {en} } @article{TerbishalievaTimmermanMikolaichuketal.2021, author = {Terbishalieva, Baiansuluu and Timmerman, Martin Jan and Mikolaichuk, Alexander and Altenberger, Uwe and Slama, Jiri and Schleicher, Anja Maria and Sudo, Masafumi and Sobel, Edward and Cichy, Sarah Bettina}, title = {Calc-alkaline volcanic rocks and zircon ages of the late Tonian}, series = {International journal of earth sciences}, volume = {110}, journal = {International journal of earth sciences}, number = {1}, publisher = {Springer}, address = {New York}, issn = {1437-3254}, doi = {10.1007/s00531-020-01956-z}, pages = {353 -- 375}, year = {2021}, abstract = {The Big Naryn Complex (BNC) in the East Djetim-Too Range of the Kyrgyz Middle Tianshan block is a tectonized, at least 2 km thick sequence of predominantly felsic to intermediate volcanic rocks intruded by porphyric rhyolite sills. It overlies a basement of metamorphic rocks and is overlain by late Neoproterozoic Djetim-Too Formation sediments; these also occur as tectonic intercalations in the BNC. The up to ca. 1100 m thick Lower Member is composed of predominantly rhyolites-to-dacites and minor basalts, while the at least 900 m thick pyroclastic Upper Member is dominated by rhyolitic-to-dacitic ignimbrites. Porphyric rhyolite sills are concentrated at the top of the Lower Member. A Lower Member rhyolite and a sill sample have LA-ICP-MS U-Pb zircon crystallization ages of 726.1 +/- 2.2 Ma and 720.3 +/- 6.5 Ma, respectively, showing that most of the magmatism occurred within a short time span in the late Tonian-early Cryogenian. Inherited zircons in the sill sample have Neoarchean (2.63, 2.64 Ga), Paleo- (2.33-1.81 Ga), Meso- (1.55 Ga), and Neoproterozoic (ca. 815 Ma) ages, and were derived from a heterogeneous Kuilyu Complex basement. A 1751 +/- 7 Ma Ar-40/Ar-39 age for amphibole from metagabbro is the age of cooling subsequent to Paleoproterozoic metamorphism of the Kuilyu Complex. The large amount of pyroclastic rocks, and their major and trace element compositions, the presence of Neoarchean to Neoproterozoic inherited zircons and a depositional basement of metamorphic rocks point to formation of the BNC in a continental magmatic arc setting.}, language = {en} } @article{LagodelaHorraUbideetal.2012, author = {Lago, M. and de la Horra, R. and Ubide, T. and Gale, C. and Galan-Abellan, B. and Barrenechea, J. F. and Lopez-Gomez, J. and Benito, M. I. and Arche, A. and Alonso-Azcarate, J. and Luque, F. J. and Timmerman, Martin Jan}, title = {First report of a Middle-Upper Permian magmatism in the SE Iberian Ranges characterisation and comparison with coeval magmatisms in the western Tethys}, series = {Journal of Iberian geology}, volume = {38}, journal = {Journal of Iberian geology}, number = {2}, publisher = {Instituto de Geolog{\´i}a Econ{\´o}mica, Consejo Superior de Investigaciones Cient{\´i}ficas, Universidad Complutense Madrid}, address = {Madrid}, issn = {1698-6180}, doi = {10.5209/rev_JIGE.2012.v38.n2.40462}, pages = {331 -- 348}, year = {2012}, abstract = {A multiple basic to intermediate sill is reported for the first time in the south-eastern Iberian Ranges. It is composed of several tabular to irregular levels intercalated within the fluvial sediments of the Alcotas Formation (Middle-Upper Permian). The sill could represent the youngest Paleozoic subvolcanic intrusion in the Iberian Ranges. The igneous rocks are classified as basaltic andesites. They show a subophitic microstructure constituted by plagioclase (An62 - An6), augite (En48Wo44Fs7 - En46Wo39Fs15), pseudomorphosed olivine, minor amounts of oxides (magnetite and ilmenite) and accessory F-apatite. According to the mineralogy and whole-rock composition, their geochemical affinity is transitional from subalkaline to alkaline. Radiometric dating of the sill is not feasible due to its significant alteration. Field criteria, however, suggest an emplacement coeval to the deposition of the Alcotas Formation (Middle-Upper Permian). This hypothesis is supported by the transitional affinity of these rocks, similar to other Middle-Upper Permian magmatisms in the western Tethys, e.g., from the Pyrenees. Taking into account their isotopic signature (epsilon(Sr) : -6.8 to -9.2; epsilon(Nd) : + 1.7 to + 8.3), an enriched mantle source with the involvement of a HIMU component has been identified. This interpretation is supported by the trace element contents. Some of these HIMU characteristics have been recognised in the Middle-Upper Permian magmatisms of the Central Pyrenees (Anayet Basin) and the High Atlas (Argana Basin). However, none of these source features are shared with other Middle-Upper Permian magmatisms of the western Tethys (Catalonian Coastal Ranges, Corsica-Sardinia and southern France), nor with the Lower Permian magmatism of the Iberian Ranges. These differences support the presence of a heterogeneous mantle in the western Tethys during the Permian.}, language = {en} } @article{MotuzaSliaupaTimmerman2015, author = {Motuza, Gediminas and Sliaupa, Saulius and Timmerman, Martin Jan}, title = {Geochemistry and Ar-40/Ar-39 age of Early Carboniferous dolerite sills in the southern Baltic Sea}, series = {Estonian journal of earth sciences}, volume = {64}, journal = {Estonian journal of earth sciences}, number = {3}, publisher = {Estonian Academy Publ.}, address = {Tallinn}, issn = {1736-4728}, doi = {10.3176/earth.2015.30}, pages = {233 -- 248}, year = {2015}, abstract = {The Early Carboniferous magmatic event in the southern Baltic Sea is manifested by dolerite intrusions. The presumable area in which the dolerite intrusions occur ranges from 30 to 60 km in east-west direction, and is about 100 km in north-south direction. The dolerites were sampled in well D1-1 and investigated by applying chemical analysis and Ar-40/Ar-39 step-heating dating. Dolerites are classified as alkali and sodic, characterized by high TiO2 (3.92, 3.99 wt\%) and P2O5 (1.67, 1.77 wt\%) and low MgO (4.89, 4.91 wt\%) concentrations, enriched in light rare earth elements, originated from an enriched mantle magma source and emplaced in a continental rift tectonic setting. The 351 +/- 11 Ma Ar-40/Ar-39 plateau age for groundmass plagioclase indicates a considerable age gap with the 310-250 Ma magmatism in southern Scandinavia and northern Germany. The magmatic rocks in the Baltic Sedimentary Basin are coeval with alkaline intrusions of NE Poland. Both magmatic provinces lie in the northwestward prolongation of the Pripyat-Dnieper-Donetsk Rift (370-359 Ma) and may constitute a later phase of magmatic activity of this propagating rift system.}, language = {en} } @article{RoetzlerTimmerman2020, author = {R{\"o}tzler, Jochen and Timmerman, Martin Jan}, title = {Geochronological and petrological constraints from the evolution in the Saxon Granulite Massif, Germany, on the Variscan continental collision orogeny}, series = {Journal of metamorphic geology}, volume = {39}, journal = {Journal of metamorphic geology}, number = {1}, publisher = {Wiley}, address = {Hoboken}, issn = {0263-4929}, doi = {10.1111/jmg.12559}, pages = {3 -- 38}, year = {2020}, abstract = {Controversy over the plate tectonic affinity and evolution of the Saxon granulites in a two- or multi-plate setting during inter- or intracontinental collision makes the Saxon Granulite Massif a key area for the understanding of the Palaeozoic Variscan orogeny. The massif is a large dome structure in which tectonic slivers of metapelite and metaophiolite units occur along a shear zone separating a diapir-like body of high-Pgranulite below from low-Pmetasedimentary rocks above. Each of the upper structural units records a different metamorphic evolution until its assembly with the exhuming granulite body. New age and petrologic data suggest that the metaophiolites developed from early Cambrian protoliths during high-Pamphibolite facies metamorphism in the mid- to late-Devonian and thermal overprinting by the exhuming hot granulite body in the early Carboniferous. A correlation of new Ar-Ar biotite ages with publishedP-T-tdata for the granulites implies that exhumation and cooling of the granulite body occurred at average rates of similar to 8 mm/year and similar to 80 degrees C/Ma, with a drop in exhumation rate from similar to 20 to similar to 2.5 mm/year and a slight rise in cooling rate between early and late stages of exhumation. A time lag ofc. 2 Ma between cooling through the closure temperatures for argon diffusion in hornblende and biotite indicates a cooling rate of 90 degrees C/Ma when all units had assembled into the massif. A two-plate model of the Variscan orogeny in which the above evolution is related to a short-lived intra-Gondwana subduction zone conflicts with the oceanic affinity of the metaophiolites and the timescale ofc. 50 Ma for the metamorphism. Alternative models focusing on the internal Variscan belt assume distinctly different material paths through the lower or upper crust for strikingly similar granulite massifs. An earlier proposed model of bilateral subduction below the internal Variscan belt may solve this problem.}, language = {en} } @misc{RoetzlerTimmerman2020, author = {R{\"o}tzler, Jochen and Timmerman, Martin Jan}, title = {Geochronological and petrological constraints from the evolution in the Saxon Granulite Massif, Germany, on the Variscan continental collision orogeny}, series = {Journal of metamorphic geology}, journal = {Journal of metamorphic geology}, issn = {1866-8372}, doi = {10.25932/publishup-54411}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-544111}, pages = {3 -- 1227}, year = {2020}, abstract = {Controversy over the plate tectonic affinity and evolution of the Saxon granulites in a two- or multi-plate setting during inter- or intracontinental collision makes the Saxon Granulite Massif a key area for the understanding of the Palaeozoic Variscan orogeny. The massif is a large dome structure in which tectonic slivers of metapelite and metaophiolite units occur along a shear zone separating a diapir-like body of high-Pgranulite below from low-Pmetasedimentary rocks above. Each of the upper structural units records a different metamorphic evolution until its assembly with the exhuming granulite body. New age and petrologic data suggest that the metaophiolites developed from early Cambrian protoliths during high-Pamphibolite facies metamorphism in the mid- to late-Devonian and thermal overprinting by the exhuming hot granulite body in the early Carboniferous. A correlation of new Ar-Ar biotite ages with publishedP-T-tdata for the granulites implies that exhumation and cooling of the granulite body occurred at average rates of similar to 8 mm/year and similar to 80 degrees C/Ma, with a drop in exhumation rate from similar to 20 to similar to 2.5 mm/year and a slight rise in cooling rate between early and late stages of exhumation. A time lag ofc. 2 Ma between cooling through the closure temperatures for argon diffusion in hornblende and biotite indicates a cooling rate of 90 degrees C/Ma when all units had assembled into the massif. A two-plate model of the Variscan orogeny in which the above evolution is related to a short-lived intra-Gondwana subduction zone conflicts with the oceanic affinity of the metaophiolites and the timescale ofc. 50 Ma for the metamorphism. Alternative models focusing on the internal Variscan belt assume distinctly different material paths through the lower or upper crust for strikingly similar granulite massifs. An earlier proposed model of bilateral subduction below the internal Variscan belt may solve this problem.}, language = {en} } @article{DalyBalaganskyTimmermanetal.2001, author = {Daly, J. S. and Balagansky, V. V. and Timmerman, Martin Jan and Whitehouse, M. J. and de Jong, K. and Guise, P. and Bogdanova, S. and Gorbatschev, R. and Bridgwater, D.}, title = {Ion microprobe U-Pb zircon geochronology and isotopic evidence for a trans-crustal suture in the Lapland-Kola Orogen, northern Fennoscandian Shield}, year = {2001}, language = {en} } @article{TimmermanHeeremansKirsteinetal.2009, author = {Timmerman, Martin Jan and Heeremans, Michel and Kirstein, Linda A. and Larsen, Bjoern Tore and Spencer-Dunworth, Elizabeth-Anne and Sundvoll, Bjoern}, title = {Linking changes in tectonic style with magmatism in northern Europe during the late Carboniferous to latest Permian}, issn = {0040-1951}, doi = {10.1016/j.tecto.2009.03.011}, year = {2009}, abstract = {Early Carboniferous to Permian magmatism associated with rifting within the northern foreland of the Variscan Orogen was widespread across Europe. During the long period of magmatic activity the regional tectonic setting changed across the region from early Carboniferous extension and basin formation to a rifting-wrenching style of deformation in the late Carboniferous (Stephanian) to early Permian. Wrenching and faulting were accompanied by widespread, voluminous and episodic magmatic extrusion, intrusion and underplating. This was followed by thermal relaxation and the development of the Northern and Southern Permian Basins in later Permian times. Thermal relaxation was punctuated by a Permo- Triassic phase of extension and graben formation. Ar-40/Ar-39 Ar step-heating dating for mineral separates and whole- rock samples of magmatic rocks from southern Scandinavia (Oslo Graben and south Sweden) and Rugen (north Germany) provides further radiometric evidence for three of the proposed periods of magmatic activity in the region. Latest Carboniferous to earliest Permian ages (c. 300-310 Ma) were obtained for volcanic rocks in the Oslo Graben and dolerite sills and dykes in south Sweden and north Germany. This phase can be time-correlated with magmatic activity that occurred throughout Europe during large-scale dextral wrenching that followed the Variscan Orogeny. A second phase of alkaline intrusions is confined to the Oslo Graben and related to caldera collapse around c. 275 Ma. The third, Permo- Triassic phase (c. 250 Ma) is considered to be related to a new tectonic cycle involving extension that triggered minor melting of enriched, fertile mantle.}, language = {en} } @article{FaithfullTimmermanUptonetal.2012, author = {Faithfull, J. W. and Timmerman, Martin Jan and Upton, B. G. J. and Rumsey, M. S.}, title = {Mid-Eocene renewal of magmatism in NW Scotland the Loch Roag Dyke, outer hebrides}, series = {Journal of the Geological Society}, volume = {169}, journal = {Journal of the Geological Society}, number = {2}, publisher = {Geological Soc. Publ. House}, address = {Bath}, issn = {0016-7649}, doi = {10.1144/0016-76492011-117}, pages = {115 -- 118}, year = {2012}, abstract = {Amonchquite dyke, in the vicinity of Loch Roag, Lewis, Outer Hebrides has an unusually enriched chemistry, and contains a unique assemblage of megacrysts and xenoliths from the lithosphere of the Hebridean craton. A Ar-40/Ar-39 plateau age of 45.2 +/- 0.2 Ma (2 sigma) of a phlogopite megacryst from the dyke overlaps an earlier reported K-Ar age, and confirms that the British Palaeogene Igneous Province extended into the Eocene. Similar late low-volume melts were erupted in the Eocene and Oligocene in West and East Greenland, suggesting that such late-stage magmatic rejuvenescence is a widespread feature across the North Atlantic Igneous Province.}, language = {en} } @article{vonSeckendorffTimmermanKrameretal.2004, author = {von Seckendorff, V. and Timmerman, Martin Jan and Kramer, W. and Wrobel, P.}, title = {New 40Ar/39Ar ages and geochemistry of late Carboniferous to early Permian lamprophyres and related volcanic rocks in the Saxothuringian Zone of the Variscan Orogen (Germany)}, year = {2004}, language = {en} } @article{HenkTimmerman2005, author = {Henk, A. and Timmerman, Martin Jan}, title = {Permian basins}, year = {2005}, language = {en} } @book{WilsonNeumannDaviesetal.2004, author = {Wilson, M. and Neumann, Else Ragnhild and Davies, G. R. and Timmerman, Martin Jan and Heeremans, Michel and Larsen, Bjoern Tore}, title = {Permo-carboniferous magmatism and rifting in Europe}, series = {Geological Society special publication}, volume = {223}, journal = {Geological Society special publication}, publisher = {Geological Society}, address = {London}, isbn = {1-86239-152-1}, pages = {498 S.}, year = {2004}, language = {en} } @article{EnnisMeereTimmermanetal.2015, author = {Ennis, Meg and Meere, Patrick A. and Timmerman, Martin Jan and Sudo, Masafumi}, title = {Post-Acadian sediment recycling in the Devonian Old Red Sandstone of Southern Ireland}, series = {Gondwana research : international geoscience journal ; official journal of the International Association for Gondwana Research}, volume = {28}, journal = {Gondwana research : international geoscience journal ; official journal of the International Association for Gondwana Research}, number = {4}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1342-937X}, doi = {10.1016/j.gr.2014.10.007}, pages = {1415 -- 1433}, year = {2015}, abstract = {The Upper Devonian Munster Basin of southern Ireland has traditionally been viewed as a post-orogenic molasse deposit that was sourced from the Caledonides of central Ireland and subsequently deformed by the end Carboniferous Variscan orogenic event. The basin fill is composed of super-mature quartz arenite sandstone that clearly represents a second cycle of deposition. The source of this detritus is now recognized as Lower Devonian Dingle Basin red bed sequences to the north. This genetic link is based on the degree of similarity in the detrital mica chemistry in both of these units; micas plot in identical fields and define the same trends. In addition, the two sequences show increased textural and chemical maturity up-sequence and define indistinguishable Ar-40/Ar-39 age ranges for the detrital mica grains. Partial resetting of the Ar ages can be attributed to elevated heat flow in the region caused by Munster Basin extension and subsequent Variscan deformation. The combined evidence from southwest Ireland therefore points to a Caledonian or possibly Taconian primary source area that initially shed detritus into the Lower Devonian Dingle Basin which was subsequently recycled into the Upper Devonian Munster Basin following mid-Devonian Acadian basin inversion. (C) 2014 International Association for Gondwana Research. Published by Elsevier B.V. All rights reserved.}, language = {en} } @article{MeereMulchroneMcCarthyetal.2016, author = {Meere, Patrick A. and Mulchrone, Kieran F. and McCarthy, Dave J. and Timmerman, Martin Jan and Dewey, John F.}, title = {Prelithification and synlithification tectonic foliation development in a clastic sedimentary sequence}, series = {Geology}, volume = {44}, journal = {Geology}, publisher = {American Institute of Physics}, address = {Boulder}, issn = {0091-7613}, doi = {10.1130/G37587.1}, pages = {291 -- 294}, year = {2016}, abstract = {The current view regarding the timing of regionally developed penetrative tectonic fabrics in sedimentary rocks is that their development postdates lithification of those rocks. In this case, fabric development is achieved by a number of deformation mechanisms, including grain rigid body rotation, crystal-plastic deformation, and pressure solution. The latter is believed to be the primary mechanism responsible for the domainal structure of cleavage in low-grade metamorphic rocks. In this study we combine field observations with strain studies to characterize considerable (>50\%) Acadian crustal shortening in a Devonian clastic sedimentary sequence from southwest Ireland. Despite these high levels of shortening there is a marked absence of the domainal cleavage structure and intraclast deformation that are expected with this level of deformation. Fabrics in these rocks are predominantly a product of rigid body rotation and repacking of extraformational clasts during deformation of a clastic sedimentary sequence before lithification was complete.}, language = {en} } @misc{MeereMulchroneMcCarthyetal.2016, author = {Meere, Patrick A. and Mulchrone, Kieran F. and McCarthy, David J. and Timmerman, Martin Jan and Dewey, John F.}, title = {Prelithification and synlithification tectonic foliation development in a clastic sedimentary sequence}, series = {Geology}, volume = {44}, journal = {Geology}, publisher = {American Institute of Physics}, address = {Boulder}, issn = {0091-7613}, doi = {10.1130/G38103Y.1}, pages = {E397 -- E397}, year = {2016}, language = {en} } @article{HeeremansTimmermanKirsteinetal.2004, author = {Heeremans, Michel and Timmerman, Martin Jan and Kirstein, Linda A. and Faleide, J. I.}, title = {The late carboniferous : early permian evolution of the central North Sea}, year = {2004}, language = {en} }