@misc{MarimonTarterHofmannVerissimoetal.2021, author = {Marimon Tarter, Mireia and Hofmann, Andrea and Ver{\´i}ssimo, Joao Marques and M{\"a}nnel, Claudia and Friederici, Angela Dorkas and H{\"o}hle, Barbara and Wartenburger, Isabell}, title = {Children's Learning of Non-adjacent Dependencies Using a Web-Based Computer Game Setting}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, volume = {12}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, issn = {1866-8364}, doi = {10.25932/publishup-55083}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-550834}, pages = {1 -- 15}, year = {2021}, abstract = {Infants show impressive speech decoding abilities and detect acoustic regularities that highlight the syntactic relations of a language, often coded via non-adjacent dependencies (NADs, e.g., is singing). It has been claimed that infants learn NADs implicitly and associatively through passive listening and that there is a shift from effortless associative learning to a more controlled learning of NADs after the age of 2 years, potentially driven by the maturation of the prefrontal cortex. To investigate if older children are able to learn NADs, Lammertink et al. (2019) recently developed a word-monitoring serial reaction time (SRT) task and could show that 6-11-year-old children learned the NADs, as their reaction times (RTs) increased then they were presented with violated NADs. In the current study we adapted their experimental paradigm and tested NAD learning in a younger group of 52 children between the age of 4-8 years in a remote, web-based, game-like setting (whack-a-mole). Children were exposed to Italian phrases containing NADs and had to monitor the occurrence of a target syllable, which was the second element of the NAD. After exposure, children did a "Stem Completion" task in which they were presented with the first element of the NAD and had to choose the second element of the NAD to complete the stimuli. Our findings show that, despite large variability in the data, children aged 4-8 years are sensitive to NADs; they show the expected differences in r RTs in the SRT task and could transfer the NAD-rule in the Stem Completion task. We discuss these results with respect to the development of NAD dependency learning in childhood and the practical impact and limitations of collecting these data in a web-based setting.}, language = {en} } @article{MarimonTarterHofmannVerissimoetal.2021, author = {Marimon Tarter, Mireia and Hofmann, Andrea and Ver{\´i}ssimo, Joao Marques and M{\"a}nnel, Claudia and Friederici, Angela Dorkas and H{\"o}hle, Barbara and Wartenburger, Isabell}, title = {Children's Learning of Non-adjacent Dependencies Using a Web-Based Computer Game Setting}, series = {Frontiers in Psychology}, volume = {12}, journal = {Frontiers in Psychology}, publisher = {Frontiers}, address = {Lausanne, Schweiz}, issn = {1664-1078}, doi = {10.3389/fpsyg.2021.734877}, pages = {1 -- 15}, year = {2021}, abstract = {Infants show impressive speech decoding abilities and detect acoustic regularities that highlight the syntactic relations of a language, often coded via non-adjacent dependencies (NADs, e.g., is singing). It has been claimed that infants learn NADs implicitly and associatively through passive listening and that there is a shift from effortless associative learning to a more controlled learning of NADs after the age of 2 years, potentially driven by the maturation of the prefrontal cortex. To investigate if older children are able to learn NADs, Lammertink et al. (2019) recently developed a word-monitoring serial reaction time (SRT) task and could show that 6-11-year-old children learned the NADs, as their reaction times (RTs) increased then they were presented with violated NADs. In the current study we adapted their experimental paradigm and tested NAD learning in a younger group of 52 children between the age of 4-8 years in a remote, web-based, game-like setting (whack-a-mole). Children were exposed to Italian phrases containing NADs and had to monitor the occurrence of a target syllable, which was the second element of the NAD. After exposure, children did a "Stem Completion" task in which they were presented with the first element of the NAD and had to choose the second element of the NAD to complete the stimuli. Our findings show that, despite large variability in the data, children aged 4-8 years are sensitive to NADs; they show the expected differences in r RTs in the SRT task and could transfer the NAD-rule in the Stem Completion task. We discuss these results with respect to the development of NAD dependency learning in childhood and the practical impact and limitations of collecting these data in a web-based setting.}, language = {en} } @article{MarimonTarterHoehleLangus2022, author = {Marimon Tarter, Mireia and H{\"o}hle, Barbara and Langus, Alan}, title = {Pupillary entrainment reveals individual differences in cue weighting in 9-month-old German-learning infants}, series = {Cognition : international journal of cognitive science}, volume = {224}, journal = {Cognition : international journal of cognitive science}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0010-0277}, doi = {10.1016/j.cognition.2022.105054}, pages = {15}, year = {2022}, abstract = {Young infants can segment continuous speech with statistical as well as prosodic cues. Understanding how these cues interact can be informative about how infants solve the segmentation problem. Here we investigate how German-speaking adults and 9-month-old German-learning infants weigh statistical and prosodic cues when segmenting continuous speech. We measured participants' pupil size while they were familiarized with a continuous speech stream where prosodic cues were pitted off against transitional probabilities. Adult participants' changes in pupil size synchronized with the occurrence of prosodic words during the familiarization and the temporal alignment of these pupillary changes was predictive of adult participants' performance at test. Further, 9-month-olds as a group failed to consistently segment the familiarization stream with prosodic or statistical cues. However, the variability in temporal alignment of the pupillary changes at word frequency showed that prosodic and statistical cues compete for dominance when segmenting continuous speech. A followup language development questionnaire at 40 months of age suggested that infants who entrained to prosodic words performed better on a vocabulary task and those infants who relied more on statistical cues performed better on grammatical tasks. Together these results suggest that statistics and prosody may serve different roles in speech segmentation in infancy.}, language = {en} } @phdthesis{MarimonTarter2019, author = {Marimon Tarter, Mireia}, title = {Word segmentation in German-learning infants and German-speaking adults}, doi = {10.25932/publishup-43740}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-437400}, school = {Universit{\"a}t Potsdam}, pages = {132}, year = {2019}, abstract = {There is evidence that infants start extracting words from fluent speech around 7.5 months of age (e.g., Jusczyk \& Aslin, 1995) and that they use at least two mechanisms to segment words forms from fluent speech: prosodic information (e.g., Jusczyk, Cutler \& Redanz, 1993) and statistical information (e.g., Saffran, Aslin \& Newport, 1996). However, how these two mechanisms interact and whether they change during development is still not fully understood. The main aim of the present work is to understand in what way different cues to word segmentation are exploited by infants when learning the language in their environment, as well as to explore whether this ability is related to later language skills. In Chapter 3 we pursued to determine the reliability of the method used in most of the experiments in the present thesis (the Headturn Preference Procedure), as well as to examine correlations and individual differences between infants' performance and later language outcomes. In Chapter 4 we investigated how German-speaking adults weigh statistical and prosodic information for word segmentation. We familiarized adults with an auditory string in which statistical and prosodic information indicated different word boundaries and obtained both behavioral and pupillometry responses. Then, we conducted further experiments to understand in what way different cues to word segmentation are exploited by 9-month-old German-learning infants (Chapter 5) and by 6-month-old German-learning infants (Chapter 6). In addition, we conducted follow-up questionnaires with the infants and obtained language outcomes at later stages of development. Our findings from this thesis revealed that (1) German-speaking adults show a strong weight of prosodic cues, at least for the materials used in this study and that (2) German-learning infants weight these two kind of cues differently depending on age and/or language experience. We observed that, unlike English-learning infants, 6-month-old infants relied more strongly on prosodic cues. Nine-month-olds do not show any preference for either of the cues in the word segmentation task. From the present results it remains unclear whether the ability to use prosodic cues to word segmentation relates to later language vocabulary. We speculate that prosody provides infants with their first window into the specific acoustic regularities in the signal, which enables them to master the specific stress pattern of German rapidly. Our findings are a step forwards in the understanding of an early impact of the native prosody compared to statistical learning in early word segmentation.}, language = {en} }