@phdthesis{Das2023, author = {Das, Samata}, title = {Modelling particle acceleration in core-collapse supernova remnants inside circumstellar wind-blown bubbles}, doi = {10.25932/publishup-61414}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-614140}, school = {Universit{\"a}t Potsdam}, pages = {142}, year = {2023}, abstract = {Supernova remnants are considered to be the primary sources of galactic cosmic rays. These cosmic rays are assumed to be accelerated by the diffusive shock acceleration mechanism, specifically at shocks in the remnants. Particularly in the core-collapse scenario, these supernova remnant shocks expand inside the wind-blown bubbles structured by massive progenitors during their lifetime. Therefore, the complex environment of wind bubbles can influence the particle acceleration and radiation from the remnants. Further, the evolution of massive stars depends on their Zero Age Main Sequence mass, rotation, and metallicity. Consequently, the structures of the wind bubbles generated during the lifetime of massive stars should be considerably different. Hence, the particle acceleration in the core-collapse supernova remnants should vary, not only from the remnants evolving in the uniform environment but also from one another, depending on their progenitor stars. A core-collapse supernova remnant with a very massive 60 𝑀 ⊙ progenitor star has been considered to study the particle acceleration at the shock considering Bohm-like diffusion. This dissertation demonstrates the modification in particle acceleration and radiation while the remnant propagates through different regions of the wind bubble by impacts from the profiles of gas density, the temperature of the bubble and the magnetic field structure. Subsequently, in this thesis, I discuss the impacts of the non-identical ambient environment of core-collapse supernova remnants on particle spectra and the non-thermal emissions, considering 20 𝑀 ⊙ and 60 𝑀⊙ massive progenitors having different evolutionary tracks. Additionally, I also analyse the effect of cosmic ray streaming instabilities on particle spectra. To model the particle acceleration in the remnants, I have performed simulations in one-dimensional spherical symmetry using RATPaC code. The transport equation for cosmic rays and magnetic turbulence in test-particle approximation, along with the induction equation for the evolution of the large-scale magnetic field, have been solved simultaneously with the hydrodynamic equations for the expansion of remnants inside the pre-supernova circumstellar medium. The results from simulations describe that the spectra of accelerated particles in supernova remnants are regulated by density fluctuations, temperature variations, the large-scale magnetic field configuration and scattering turbulence. Although the diffusive shock acceleration mechanism at supernova remnant shock predicts the spectral index of 2 for the accelerated non-thermal particles, I have obtained the particle spectra that deviate from this prediction, in the core-collapse scenario. I have found that the particle spectral index reaches 2.5 for the supernova remnant with 60 𝑀 ⊙ progenitor when the remnant resides inside the shocked wind region of the wind bubble, and this softness persists at later evolutionary stages even with Bohm-like diffusion for accelerated particles. However, the supernova remnant with 20 𝑀 ⊙ progenitor does not demonstrate persistent softness in particle spectra from the influence of the hydrodynamics of the corresponding wind bubble. At later stages of evolution, the particle spectra illustrate softness at higher energies for both remnants as the consequence of the escape of high-energy particles from the remnants while considering the cosmic ray streaming instabilities. Finally, I have probed the emission morphology of remnants that varies depending on the progenitors, particularly in earlier evolutionary stages. This dissertation provides insight into different core-collapse remnants expanding inside wind bubbles, for instance, the calculated gamma-ray spectral index from the supernova remnant with 60 𝑀 ⊙ progenitor at later evolutionary stages is consistent with that of the observed supernova remnants expanding in dense molecular clouds.}, language = {en} } @phdthesis{IlićPetković2023, author = {Ilić Petković, Nikoleta}, title = {Stars under influence: evidence of tidal interactions between stars and substellar companions}, doi = {10.25932/publishup-61597}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-615972}, school = {Universit{\"a}t Potsdam}, pages = {xi, 137}, year = {2023}, abstract = {Tidal interactions occur between gravitationally bound astrophysical bodies. If their spatial separation is sufficiently small, the bodies can induce tides on each other, leading to angular momentum transfer and altering of evolutionary path the bodies would have followed if they were single objects. The tidal processes are well established in the Solar planet-moon systems and close stellar binary systems. However, how do stars behave if they are orbited by a substellar companion (e.g. a planet or a brown dwarf) on a tight orbit? Typically, a substellar companion inside the corotation radius of a star will migrate toward the star as it loses orbital angular momentum. On the other hand, the star will gain angular momentum which has the potential to increase its rotation rate. The effect should be more pronounced if the substellar companion is more massive. As the stellar rotation rate and the magnetic activity level are coupled, the star should appear more magnetically active under the tidal influence of the orbiting substellar companion. However, the difficulty in proving that a star has a higher magnetic activity level due to tidal interactions lies in the fact that (I) substellar companions around active stars are easier to detect if they are more massive, leading to a bias toward massive companions around active stars and mimicking the tidal interaction effect, and that (II) the age of a main-sequence star cannot be easily determined, leaving the possibility that a star is more active due to its young age. In our work, we overcome these issues by employing wide stellar binary systems where one star hosts a substellar companion, and where the other star provides the magnetic activity baseline for the host star, assuming they have coevolved, and thereby provides the host's activity level if tidal interactions have no effect on it. Firstly, we find that extrasolar planets can noticeably increase the host star's X-ray luminosity and that the effect is more pronounced if the exoplanet is at least Jupiter-like in mass and close to the star. Further, we find that a brown dwarf will have an even stronger effect, as expected, and that the X-ray surface flux difference between the host star and the wide stellar companion is a significant outlier when compared to a large sample of similar wide binary systems without any known substellar companions. This result proves that substellar hosting wide binary systems can be good tools to reveal the tidal effect on host stars, and also show that the typical stellar age indicators as activity or rotation cannot be used for these stars. Finally, knowing that the activity difference is a good tracer of the substellar companion's tidal impact, we develop an analytical method to calculate the modified tidal quality factor Q' of individual host stars, which defines the tidal dissipation efficiency in the convective envelope of a given main-sequence star.}, language = {en} }