@article{RousseauErardBecketal.2018, author = {Rousseau, Batiste and Erard, St{\´e}phane and Beck, P. and Quirico, Eric and Schmitt, B. and Brissaud, O. and Montes-Hernandez, G. and Capaccioni, F. and Filacchione, Gianrico and Bockelee-Morvan, Dominique and Leyrat, C. and Ciarniello, M. and Raponi, Andrea and Kappel, David and Arnold, G. and Moroz, L. V. and Palomba, Ernesto and Tosi, Federico}, title = {Laboratory simulations of the Vis-NIR spectra of comet 67P using sub-mu m sized cosmochemical analogues}, series = {Icarus : international journal of solar system studies}, volume = {306}, journal = {Icarus : international journal of solar system studies}, publisher = {Elsevier}, address = {San Diego}, organization = {VIRTIS Team}, issn = {0019-1035}, doi = {10.1016/j.icarus.2017.10.015}, pages = {306 -- 318}, year = {2018}, abstract = {Laboratory spectral measurements of relevant analogue materials were performed in the framework of the Rosetta mission in order to explain the surface spectral properties of comet 67P. Fine powders of coal, iron sulphides, silicates and their mixtures were prepared and their spectra measured in the Vis-IR range. These spectra are compared to a reference spectrum of 67P nucleus obtained with the VIRTIS/Rosetta instrument up to 2.7 mu m, excluding the organics band centred at 3.2 mu m. The species used are known to be chemical analogues for cometary materials which could be present at the surface of 67P. Grain sizes of the powders range from tens of nanometres to hundreds of micrometres. Some of the mixtures studied here actually reach the very low reflectance level observed by VIRTIS on 67P. The best match is provided by a mixture of sub-micron coal, pyrrhotite, and silicates. Grain sizes are in agreement with the sizes of the dust particles detected by the GIADA, MIDAS and COSIMA instruments on board Rosetta. The coal used in the experiment is responsible for the spectral slope in the visible and infrared ranges. Pyrrhotite, which is strongly absorbing, is responsible for the low albedo observed in the NIR. The darkest components dominate the spectra, especially within intimate mixtures. Depending on sample preparation, pyrrhotite can coat the coal and silicate aggregates. Such coating effects can affect the spectra as much as particle size. In contrast, silicates seem to play a minor role. (c) 2017 Elsevier Inc. All rights reserved.}, language = {en} } @article{QuiricoMorozSchmittetal.2016, author = {Quirico, E. and Moroz, Liubov V. and Schmitt, B. and Arnold, Gabriele and Faure, M. and Beck, P. and Bonal, L. and Ciarniello, M. and Capaccioni, F. and Filacchione, G. and Erard, S. and Leyrat, C. and Bockelee-Morvan, D. and Zinzi, A. and Palomba, E. and Drossart, P. and Tosi, F. and Capria, M. T. and De Sanctis, M. C. and Raponi, A. and Fonti, S. and Mancarella, F. and Orofino, V. and Barucci, A. and Blecka, M. I. and Carlson, R. and Despan, D. and Faure, A. and Fornasier, S. and Gudipati, M. S. and Longobardo, A. and Markus, K. and Mennella, V. and Merlin, F. and Piccioni, G. and Rousseau, B. and Taylor, F.}, title = {Refractory and semi-volatile organics at the surface of comet 67P/Churyumov-Gerasimenko: Insights from the VIRTIS/Rosetta imaging spectrometer}, series = {Icarus : international journal of solar system studies}, volume = {272}, journal = {Icarus : international journal of solar system studies}, publisher = {Elsevier}, address = {San Diego}, organization = {Rosetta VIRTIS Team}, issn = {0019-1035}, doi = {10.1016/j.icarus.2016.02.028}, pages = {32 -- 47}, year = {2016}, abstract = {The VIRTIS (Visible, Infrared and Thermal Imaging Spectrometer) instrument aboard the Rosetta spacecraft has performed extensive spectral mapping of the surface of comet 67P/Churyumov-Gerasimenko in the range 0.3-5 mu m. The reflectance spectra collected across the surface display a low reflectance factor over the whole spectral range, two spectral slopes in the visible and near-infrared ranges and a broad absorption band centered at 3.2 mu m. The first two of these characteristics are typical of dark small bodies of the Solar System and are difficult to interpret in terms of composition. Moreover, solar wind irradiation may modify the structure and composition of surface materials and there is no unequivocal interpretation of these spectra devoid of vibrational bands. To circumvent these problems, we consider the composition of cometary grains analyzed in the laboratory to constrain the nature of the cometary materials and consider results on surface rejuvenation and solar wind processing provided by the OSIRIS and ROSINA instruments, respectively. Our results lead to five main conclusions: (i) The low albedo of comet 67P/CG is accounted for by a dark refractory polyaromatic carbonaceous component mixed with opaque minerals. VIRTIS data do not provide direct insights into the nature of these opaque minerals. However, according to the composition of cometary grains analyzed in the laboratory, we infer that they consist of Fe-Ni alloys and FeS sulfides. (ii) A semi-volatile component, consisting of a complex mix of low weight molecular species not volatilized at T similar to 220 K, is likely a major carrier of the 3.2 p.m band. Water ice contributes significantly to this feature in the neck region but not in other regions of the comet. COOH in carboxylic acids is the only chemical group that encompasses the broad width of this feature. It appears as a highly plausible candidate along with the NH4+ ion. (iii) Photolytic/thermal residues, produced in the laboratory from interstellar ice analogs, are potentially good spectral analogs. (iv) No hydrated minerals were identified and our data support the lack of genetic links with the CI, CR and CM primitive chondrites. This concerns in particular the Orgueil chondrite, previously suspected to have been of cometary origin. (v) The comparison between fresh and aged terrains revealed no effect of solar wind irradiation on the 3.2 mu m band. This is consistent with the presence of efficient resurfacing processes such as dust transport from the interior to the surface, as revealed by the OSIRIS camera. (C) 2016 Elsevier Inc. All rights reserved.}, language = {en} }