@article{KramerSchadtNiedballaPilgrimetal.2013, author = {Kramer-Schadt, Stephanie and Niedballa, J{\"u}rgen and Pilgrim, John D. and Schr{\"o}der-Esselbach, Boris and Lindenborn, Jana and Reinfelder, Vanessa and Stillfried, Milena and Heckmann, Ilja and Scharf, Anne K. and Augeri, Dave M. and Cheyne, Susan M. and Hearn, Andrew J. and Ross, Joanna and Macdonald, David W. and Mathai, John and Eaton, James and Marshall, Andrew J. and Semiadi, Gono and Rustam, Rustam and Bernard, Henry and Alfred, Raymond and Samejima, Hiromitsu and Duckworth, J. W. and Breitenmoser-Wuersten, Christine and Belant, Jerrold L. and Hofer, Heribert and Wilting, Andreas}, title = {The importance of correcting for sampling bias in MaxEnt species distribution models}, series = {Diversity \& distributions : a journal of biological invasions and biodiversity}, volume = {19}, journal = {Diversity \& distributions : a journal of biological invasions and biodiversity}, number = {11}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {1366-9516}, doi = {10.1111/ddi.12096}, pages = {1366 -- 1379}, year = {2013}, abstract = {AimAdvancement in ecological methods predicting species distributions is a crucial precondition for deriving sound management actions. Maximum entropy (MaxEnt) models are a popular tool to predict species distributions, as they are considered able to cope well with sparse, irregularly sampled data and minor location errors. Although a fundamental assumption of MaxEnt is that the entire area of interest has been systematically sampled, in practice, MaxEnt models are usually built from occurrence records that are spatially biased towards better-surveyed areas. Two common, yet not compared, strategies to cope with uneven sampling effort are spatial filtering of occurrence data and background manipulation using environmental data with the same spatial bias as occurrence data. We tested these strategies using simulated data and a recently collated dataset on Malay civet Viverra tangalunga in Borneo. LocationBorneo, Southeast Asia. MethodsWe collated 504 occurrence records of Malay civets from Borneo of which 291 records were from 2001 to 2011 and used them in the MaxEnt analysis (baseline scenario) together with 25 environmental input variables. We simulated datasets for two virtual species (similar to a range-restricted highland and a lowland species) using the same number of records for model building. As occurrence records were biased towards north-eastern Borneo, we investigated the efficacy of spatial filtering versus background manipulation to reduce overprediction or underprediction in specific areas. ResultsSpatial filtering minimized omission errors (false negatives) and commission errors (false positives). We recommend that when sample size is insufficient to allow spatial filtering, manipulation of the background dataset is preferable to not correcting for sampling bias, although predictions were comparatively weak and commission errors increased. Main ConclusionsWe conclude that a substantial improvement in the quality of model predictions can be achieved if uneven sampling effort is taken into account, thereby improving the efficacy of species conservation planning.}, language = {en} } @article{DellingerEsslHojsgaardetal.2016, author = {Dellinger, Agnes S. and Essl, Franz and Hojsgaard, Diego and Kirchheimer, Bernhard and Klatt, Simone and Dawson, Wayne and Pergl, Jan and Pysek, Petr and van Kleunen, Mark and Weber, Ewald and Winter, Marten and Hoerandl, Elvira and Dullinger, Stefan}, title = {Niche dynamics of alien species do not differ among sexual and apomictic flowering plants}, series = {New phytologist : international journal of plant science}, volume = {209}, journal = {New phytologist : international journal of plant science}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {0028-646X}, doi = {10.1111/nph.13694}, pages = {1313 -- 1323}, year = {2016}, abstract = {We compiled global occurrence data sets of 13 congeneric sexual and apomictic species pairs, and used principal components analysis (PCA) and kernel smoothers to compare changes in climatic niche optima, breadths and unfilling/expansion between native and alien ranges. Niche change metrics were compared between sexual and apomictic species. All 26 species showed changes in niche optima and/or breadth and 14 species significantly expanded their climatic niches. However, we found no effect of the reproductive system on niche dynamics. Instead, species with narrower native niches showed higher rates of niche expansion in the alien ranges. Our results suggest that niche shifts are frequent in plant invasions but evolutionary potential may not be of major importance for such shifts. Niche dynamics rather appear to be driven by changes of the realized niche without adaptive change of the fundamental climatic niche.}, language = {en} } @article{PagelSchurr2012, author = {Pagel, J{\"o}rn and Schurr, Frank Martin}, title = {Forecasting species ranges by statistical estimation of ecological niches and spatial population dynamics}, series = {Global ecology and biogeography : a journal of macroecology}, volume = {21}, journal = {Global ecology and biogeography : a journal of macroecology}, number = {2}, publisher = {Wiley-Blackwell}, address = {Malden}, issn = {1466-822X}, doi = {10.1111/j.1466-8238.2011.00663.x}, pages = {293 -- 304}, year = {2012}, abstract = {Aim The study and prediction of speciesenvironment relationships is currently mainly based on species distribution models. These purely correlative models neglect spatial population dynamics and assume that species distributions are in equilibrium with their environment. This causes biased estimates of species niches and handicaps forecasts of range dynamics under environmental change. Here we aim to develop an approach that statistically estimates process-based models of range dynamics from data on species distributions and permits a more comprehensive quantification of forecast uncertainties. Innovation We present an approach for the statistical estimation of process-based dynamic range models (DRMs) that integrate Hutchinson's niche concept with spatial population dynamics. In a hierarchical Bayesian framework the environmental response of demographic rates, local population dynamics and dispersal are estimated conditional upon each other while accounting for various sources of uncertainty. The method thus: (1) jointly infers species niches and spatiotemporal population dynamics from occurrence and abundance data, and (2) provides fully probabilistic forecasts of future range dynamics under environmental change. In a simulation study, we investigate the performance of DRMs for a variety of scenarios that differ in both ecological dynamics and the data used for model estimation. Main conclusions Our results demonstrate the importance of considering dynamic aspects in the collection and analysis of biodiversity data. In combination with informative data, the presented framework has the potential to markedly improve the quantification of ecological niches, the process-based understanding of range dynamics and the forecasting of species responses to environmental change. It thereby strengthens links between biogeography, population biology and theoretical and applied ecology.}, language = {en} }