@misc{HauffeRathAgyapongetal.2022, author = {Hauffe, Robert and Rath, Michaela and Agyapong, Wilson and Jonas, Wenke and Vogel, Heike and Schulz, Tim Julius and Schwarz, Maria and Kipp, Anna Patricia and Bl{\"u}her, Matthias and Kleinridders, Andr{\´e}}, title = {Obesity Hinders the Protective Effect of Selenite Supplementation on Insulin Signaling}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, issn = {1866-8372}, doi = {10.25932/publishup-56170}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-561709}, pages = {1 -- 16}, year = {2022}, abstract = {The intake of high-fat diets (HFDs) containing large amounts of saturated long-chain fatty acids leads to obesity, oxidative stress, inflammation, and insulin resistance. The trace element selenium, as a crucial part of antioxidative selenoproteins, can protect against the development of diet-induced insulin resistance in white adipose tissue (WAT) by increasing glutathione peroxidase 3 (GPx3) and insulin receptor (IR) expression. Whether selenite (Se) can attenuate insulin resistance in established lipotoxic and obese conditions is unclear. We confirm that GPX3 mRNA expression in adipose tissue correlates with BMI in humans. Cultivating 3T3-L1 pre-adipocytes in palmitate-containing medium followed by Se treatment attenuates insulin resistance with enhanced GPx3 and IR expression and adipocyte differentiation. However, feeding obese mice a selenium-enriched high-fat diet (SRHFD) only resulted in a modest increase in overall selenoprotein gene expression in WAT in mice with unaltered body weight development, glucose tolerance, and insulin resistance. While Se supplementation improved adipocyte morphology, it did not alter WAT insulin sensitivity. However, mice fed a SRHFD exhibited increased insulin content in the pancreas. Overall, while selenite protects against palmitate-induced insulin resistance in vitro, obesity impedes the effect of selenite on insulin action and adipose tissue metabolism in vivo.}, language = {en} } @article{HauffeRathAgyapongetal.2022, author = {Hauffe, Robert and Rath, Michaela and Agyapong, Wilson and Jonas, Wenke and Vogel, Heike and Schulz, Tim Julius and Schwarz, Maria and Kipp, Anna Patricia and Bl{\"u}her, Matthias and Kleinridders, Andr{\´e}}, title = {Obesity Hinders the Protective Effect of Selenite Supplementation on Insulin Signaling}, series = {Antioxidants}, volume = {11}, journal = {Antioxidants}, edition = {5}, publisher = {MDPI}, address = {Basel, Schweiz}, issn = {2076-3921}, doi = {10.3390/antiox11050862}, pages = {1 -- 16}, year = {2022}, abstract = {The intake of high-fat diets (HFDs) containing large amounts of saturated long-chain fatty acids leads to obesity, oxidative stress, inflammation, and insulin resistance. The trace element selenium, as a crucial part of antioxidative selenoproteins, can protect against the development of diet-induced insulin resistance in white adipose tissue (WAT) by increasing glutathione peroxidase 3 (GPx3) and insulin receptor (IR) expression. Whether selenite (Se) can attenuate insulin resistance in established lipotoxic and obese conditions is unclear. We confirm that GPX3 mRNA expression in adipose tissue correlates with BMI in humans. Cultivating 3T3-L1 pre-adipocytes in palmitate-containing medium followed by Se treatment attenuates insulin resistance with enhanced GPx3 and IR expression and adipocyte differentiation. However, feeding obese mice a selenium-enriched high-fat diet (SRHFD) only resulted in a modest increase in overall selenoprotein gene expression in WAT in mice with unaltered body weight development, glucose tolerance, and insulin resistance. While Se supplementation improved adipocyte morphology, it did not alter WAT insulin sensitivity. However, mice fed a SRHFD exhibited increased insulin content in the pancreas. Overall, while selenite protects against palmitate-induced insulin resistance in vitro, obesity impedes the effect of selenite on insulin action and adipose tissue metabolism in vivo.}, language = {en} } @phdthesis{Schell2022, author = {Schell, Mareike}, title = {Investigating the effect of Lactobacillus rhamnosus GG on emotional behavior in diet-induced obese C57BL/6N mice}, school = {Universit{\"a}t Potsdam}, pages = {XVI, 117}, year = {2022}, abstract = {The prevalence of depression and anxiety is increased in obese patients compared to healthy humans, which is partially due to a shared pathogenesis, including insulin resistance and inflammation. These factors are also linked to intestinal dysbiosis. Additionally, the chronic consumption of diets rich in saturated fats results in body weight gain, hormonal resistances and unfavorable changes in the microbiome composition. The intake of Lactobacilli has already been shown to improve dysbiosis along with metabolism and mood. Yet, the beneficial role and the underlying mechanism of Lactobacillus rhamnosus GG (LGG) to improve emotional behavior in established diet-induced obese conditions are, so far, unknown. To characterize the role of LGG in diet-induced obesity, female and male C57BL/6N mice were fed a semi-synthetic low-fat diet (LFD, 10 \% kcal from fat) or a conventional high-fat diet (HFD, 45 \% kcal from fat) for initial 6 weeks, which was followed by daily oral gavage of vehicle or 1x10^8 CFU of LGG until the end of the experiment. Mice were subjected to basic metabolic and extensive behavioral phenotyping, with a focus on emotional behavior. Moreover, composition of cecal gut microbiome, metabolomic profile in plasma and cerebrospinal fluid was investigated and followed by molecular analyses. Both HFD-feeding and LGG application resulted in sex-specific differences. While LGG prevented the increase of plasma insulin, adrenal gland weight and hyperactivity in diet-induced obese female mice, there was no regulation of anxiodepressive-like behavior. In contrast, metabolism of male mice did not benefit from LGG application, but strikingly, LGG decreased specifically depressive-like behavior in the Mousetail Suspension Test which was confirmed by the Splash Test characterizing motivation for 'self-care'. The microbiome analysis in male mice revealed that HFD-feeding, but not LGG application, altered cecal microbiome composition, indicating a direct effect of LGG on behavioral regulation. However, in female mice, both HFD-feeding and LGG application resulted in changes of microbiome composition, which presumably affected metabolism. Moreover, as diet-induced obese female mice unexpectedly did not exhibit anxiodepressive-like behavior, follow-up analyses were conducted in male mice. Here, HFD-feeding significantly altered abundance of plasma lipids whereas LGG decreased branched chain amino acids which associated with improved emotional behavior. In nucleus accumbens (NAcc) and VTA/SN, which belong to the dopaminergic system, LGG restored HFD-induced decrease of tyrosine hydroxylase, the rate-limiting enzyme in dopamine synthesis, on gene expression level. Lastly, transcriptome analysis in the NAcc identified gene expression of cholecystokinin as a potential mediator of the effect of LGG on HFD-induced emotional alterations. In summary, this thesis revealed the beneficial effects of LGG application on emotional alterations in established diet-induced obesity. Furthermore, both HFD-feeding and LGG treatment exhibited sex-specific effects, resulting in metabolic improvements in female mice while LGG application mitigated depressive-like behavior in obese male mice along with a molecular signature of restored dopamine synthesis and neuropeptide signaling.}, language = {en} } @article{BirukovGlintborgSchulzeetal.2022, author = {Birukov, Anna and Glintborg, Dorte and Schulze, Matthias B. and Jensen, Tina K. and Kuxhaus, Olga and Andersen, Louise B. and Kr{\"a}ker, Kristin and Polemiti, Elli and Jensen, Boye L. and J{\o}rgensen, Jan S. and Dechend, Ralf and Andersen, Marianne S.}, title = {Elevated blood pressure in pregnant women with gestational diabetes according to the WHO criteria: importance of overweight}, series = {Journal of hypertension}, volume = {40}, journal = {Journal of hypertension}, number = {8}, publisher = {Lippincott Williams \& Wilkins}, address = {Philadelphia}, issn = {0263-6352}, doi = {10.1097/HJH.0000000000003196}, pages = {1614 -- 1623}, year = {2022}, abstract = {Objective: Hypertension before and during early pregnancy has been associated with an increased risk of gestational diabetes mellitus (GDM) in retrospective analyses. We aimed to investigate the prospective blood pressure trackings in a population-based cohort of pregnant women, who were stratified according to their metabolic status in early third trimester. Methods: We recorded blood pressure longitudinally during pregnancy in 1230 women from the Odense Child Cohort, Denmark. Fasting glucose and insulin were measured at gestational weeks 28-30. Metabolic status was evaluated according to the WHO 2013 threshold for GDM (GDM-WHO: fasting plasma glucose >= 5.1 mmol/l), insulin and homeostatic model assessment of insulin resistance (HOMA-IR). Relationships between metabolic status in third trimester and blood pressure trajectories were evaluated with adjusted linear mixed models. Trajectory was defined as blood pressure records in pregnancy per 4 weeks interval. Results: Prevalence of GDM-WHO was 40\% (498/1230). GDM-WHO was associated with 1.46 (0.22-2.70) mmHg higher SBP and 1.04 (0.07-2.01) mmHg higher DBP trajectories in the overall cohort. The associations were driven by differences in the overweight group, with 3.14 (1.05-5.25) mmHg higher SBP and 1.94 (0.42-3.47) mmHg higher DBP per 4 weeks in women with GDM-WHO compared with women without GDM-WHO. GDM-WHO was not associated with blood pressure in women with normal weight. Blood pressure trajectories were elevated across quartiles of insulin resistance. Conclusion: GDM-WHO is associated with higher blood pressure in pregnancy, and there appears to be a stronger effect in overweight women.}, language = {en} } @article{SteinhoffWagnerTaschleretal.2022, author = {Steinhoff, Julia S. and Wagner, Carina and Taschler, Ulrike and Wulff, Sascha and Kiefer, Marie F. and Petricek, Konstantin M. and Wowro, Sylvia J. and Oster, Moritz and Flores, Roberto E. and Yang, Na and Li, Chen and Meng, Yueming and Sommerfeld, Manuela and Weger, Stefan and Henze, Andrea and Raila, Jens and Lass, Achim and Schupp, Michael}, title = {Acute retinol mobilization by retinol-binding protein 4 in mouse liver induces fibroblast growth factor 21 expression}, series = {Journal of lipid research}, volume = {63}, journal = {Journal of lipid research}, number = {10}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0022-2275}, doi = {10.1016/j.jlr.2022.100268}, pages = {11}, year = {2022}, abstract = {Hepatocytes secrete retinol-binding pro-tein 4 (RBP4) into circulation, thereby mobilizing vitamin A from the liver to provide retinol for extrahepatic tissues. Obesity and insulin resistance are associated with elevated RBP4 levels in the blood. However, in a previous study, we observed that chronically increased RBP4 by forced Rbp4 expres-sion in the liver does not impair glucose homeostasis in mice. Here, we investigated the effects of an acute mobilization of hepatic vitamin A stores by hepatic overexpression of RBP4 in mice. We show that he-patic retinol mobilization decreases body fat content and enhances fat turnover. Mechanistically, we found that acute retinol mobilization increases hepatic expression and serum levels of fibroblast growth factor 21 (FGF21), which is regulated by retinol mobilization and retinoic acid in primary hepato-cytes. Moreover, we provide evidence that the insulin-sensitizing effect of FGF21 is associated with organ-specific adaptations in retinoid homeostasis. Taken together, our findings identify a novel cross-talk between retinoid homeostasis and FGF21 in mice with acute RBP4-mediated retinol mobilization from the liver.}, language = {en} }