@article{AbouserieZehbeMetzneretal.2017, author = {Abouserie, Ahed and Zehbe, Kerstin and Metzner, Philipp and Kelling, Alexandra and G{\"u}nter, Christina and Schilde, Uwe and Strauch, Peter and K{\"o}rzd{\"o}rfer, Thomas and Taubert, Andreas}, title = {Alkylpyridinium Tetrahalidometallate Ionic Liquids and Ionic Liquid Crystals: Insights into the Origin of Their Phase Behavior}, series = {European journal of inorganic chemistry : a journal of ChemPubSoc Europe}, journal = {European journal of inorganic chemistry : a journal of ChemPubSoc Europe}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1434-1948}, doi = {10.1002/ejic.201700826}, pages = {5640 -- 5649}, year = {2017}, abstract = {Six N-alkylpyridinium salts [CnPy](2)[MCl4] (n = 4 or 12 and M = Co, Cu, Zn) were synthesized, and their structure and thermal properties were studied. The [C4Py](2)[MCl4] compounds are monoclinic and crystallize in the space group P2(1)/n. The crystals of the longer chain analogues [C12Py](2)[MCl4] are triclinic and crystallize in the space group P (1) over bar. Above the melting temperature, all compounds are ionic liquids (ILs). The derivatives with the longer C12 chain exhibit liquid crystallinity and the shorter chain compounds only show a melting transition. Consistent with single-crystal analysis, electron paramagnetic resonance spectroscopy suggests that the [CuCl4](2-) ions in the Cu-based ILs have a distorted tetrahedral geometry.}, language = {en} } @article{AbouserieZehbeMetzneretal.2017, author = {Abouserie, Ahed and Zehbe, Kerstin and Metzner, Philipp and Kelling, Alexandra and G{\"u}nter, Christina and Schilde, Uwe and Strauch, Peter and K{\"o}rzd{\"o}rfer, Thomas and Taubert, Andreas}, title = {Alkylpyridinium Tetrahalidometallate Ionic Liquids and Ionic Liquid Crystals: Insights into the Origin of Their Phase Behavior}, series = {European journal of inorganic chemistry : a journal of ChemPubSoc Europe}, journal = {European journal of inorganic chemistry : a journal of ChemPubSoc Europe}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1434-1948}, doi = {10.1002/ejic.201700826}, pages = {5640 -- 5649}, year = {2017}, abstract = {Six N-alkylpyridinium salts [CnPy](2)[MCl4] (n = 4 or 12 and M = Co, Cu, Zn) were synthesized, and their structure and thermal properties were studied. The [C4Py](2)[MCl4] compounds are monoclinic and crystallize in the space group P2(1)/n. The crystals of the longer chain analogues [C12Py](2)[MCl4] are triclinic and crystallize in the space group P (1) over bar. Above the melting temperature, all compounds are ionic liquids (ILs). The derivatives with the longer C12 chain exhibit liquid crystallinity and the shorter chain compounds only show a melting transition. Consistent with single-crystal analysis, electron paramagnetic resonance spectroscopy suggests that the [CuCl4](2-) ions in the Cu-based ILs have a distorted tetrahedral geometry.}, language = {en} } @article{AgarwalMarwanMaheswaranetal.2017, author = {Agarwal, Ankit and Marwan, Norbert and Maheswaran, Rathinasamy and Merz, Bruno and Kurths, J{\"u}rgen}, title = {Multi-scale event synchronization analysis for unravelling climate processes: a wavelet-based approach}, series = {Nonlinear processes in geophysics}, volume = {24}, journal = {Nonlinear processes in geophysics}, publisher = {Copernicus}, address = {G{\"o}ttingen}, issn = {1023-5809}, doi = {10.5194/npg-24-599-2017}, pages = {599 -- 611}, year = {2017}, abstract = {The temporal dynamics of climate processes are spread across different timescales and, as such, the study of these processes at only one selected timescale might not reveal the complete mechanisms and interactions within and between the (sub-) processes. To capture the non-linear interactions between climatic events, the method of event synchronization has found increasing attention recently. The main drawback with the present estimation of event synchronization is its restriction to analysing the time series at one reference timescale only. The study of event synchronization at multiple scales would be of great interest to comprehend the dynamics of the investigated climate processes. In this paper, the wavelet-based multi-scale event synchronization (MSES) method is proposed by combining the wavelet transform and event synchronization. Wavelets are used extensively to comprehend multi-scale processes and the dynamics of processes across various timescales. The proposed method allows the study of spatio-temporal patterns across different timescales. The method is tested on synthetic and real-world time series in order to check its replicability and applicability. The results indicate that MSES is able to capture relationships that exist between processes at different timescales.}, language = {en} } @misc{AichLierschVetteretal.2017, author = {Aich, Valentin and Liersch, Stefan and Vetter, Tobias and Andersson, Jafet C. M. and M{\"u}ller, Eva Nora and Hattermann, Fred}, title = {Climate or land use?}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-400115}, pages = {25}, year = {2017}, abstract = {This study intends to contribute to the ongoing discussion on whether land use and land cover changes (LULC) or climate trends have the major influence on the observed increase of flood magnitudes in the Sahel. A simulation-based approach is used for attributing the observed trends to the postulated drivers. For this purpose, the ecohydrological model SWIM (Soil and Water Integrated Model) with a new, dynamic LULC module was set up for the Sahelian part of the Niger River until Niamey, including the main tributaries Sirba and Goroul. The model was driven with observed, reanalyzed climate and LULC data for the years 1950-2009. In order to quantify the shares of influence, one simulation was carried out with constant land cover as of 1950, and one including LULC. As quantitative measure, the gradients of the simulated trends were compared to the observed trend. The modeling studies showed that for the Sirba River only the simulation which included LULC was able to reproduce the observed trend. The simulation without LULC showed a positive trend for flood magnitudes, but underestimated the trend significantly. For the Goroul River and the local flood of the Niger River at Niamey, the simulations were only partly able to reproduce the observed trend. In conclusion, the new LULC module enabled some first quantitative insights into the relative influence of LULC and climatic changes. For the Sirba catchment, the results imply that LULC and climatic changes contribute in roughly equal shares to the observed increase in flooding. For the other parts of the subcatchment, the results are less clear but show, that climatic changes and LULC are drivers for the flood increase; however their shares cannot be quantified. Based on these modeling results, we argue for a two-pillar adaptation strategy to reduce current and future flood risk: Flood mitigation for reducing LULC-induced flood increase, and flood adaptation for a general reduction of flood vulnerability.}, language = {en} } @article{AichnerHiltPerillonetal.2017, author = {Aichner, Bernhard and Hilt, Sabine and Perillon, Cecile and Gillefalk, Mikael and Sachse, Dirk}, title = {Biosynthetic hydrogen isotopic fractionation factors during lipid synthesis in submerged aquatic macrophytes: Effect of groundwater discharge and salinity}, series = {Organic geochemistry : the international journal for rapid publication of current research in organic geochemistry and biochemistry}, volume = {113}, journal = {Organic geochemistry : the international journal for rapid publication of current research in organic geochemistry and biochemistry}, publisher = {Elsevier}, address = {Oxford}, issn = {0146-6380}, doi = {10.1016/j.orggeochem.2017.07.021}, pages = {10 -- 16}, year = {2017}, abstract = {Sedimentary lipid biomarkers have become widely used tools for reconstructing past climatic and ecological changes due to their ubiquitous occurrence in lake sediments. In particular, the hydrogen isotopic composition (expressed as delta D values) of leaf wax lipids derived from terrestrial plants has been a focus of research during the last two decades and the understanding of competing environmental and plant physiological factors influencing the delta D values has greatly improved. Comparatively less attention has been paid to lipid biomarkers derived from aquatic plants, although these compounds are abundant in many lacustrine sediments. We therefore conducted a field and laboratory experiment to study the effect of salinity and groundwater discharge on the isotopic composition of aquatic plant biomarkers. We analyzed samples of the common submerged plant species, Potamogeton pectinatus (sago pondweed), which has a wide geographic distribution and can tolerate high salinity. We tested the effect of groundwater discharge (characterized by more negative delta D values relative to lake water) and salinity on the delta D values of n-alkanes from P. pectinatus by comparing plants (i) collected from the oligotrophic freshwater Lake Stechlin (Germany) at shallow littoral depth from locations with and without groundwater discharge, and (ii) plants grown from tubers collected from the eutrophic Lake Muggelsee in nutrient solution at four salinity levels. Isotopically depleted groundwater did not have a significant influence on the delta D values of n-alkanes in Lake Stechlin P. pectinatus and calculated isotopic fractionation factors epsilon(l/w) between lake water and n-alkanes averaged -137 +/- 9\%(n-C-23), -136 +/- 7\%(n-C-25) and -131 +/- 6\%(n-C-27), respectively. Similar epsilon values were calculated for plants from Lake Muggelsee grown in freshwater nutrient solution (-134 +/- 11\% for n-C-23), while greater fractionation was observed at increased salinity values of 10 (163 +/- 12\%) and 15(-172 +/- 15\%). We therefore suggest an average e value of -136 +/- 9\% between source water and the major n-alkanes in P. pectinatus grown under freshwater conditions. Our results demonstrate that isotopic fractionation can increase by 30-40\% at salinity values 10 and 15. These results could be explained either by inhibited plant growth at higher salinity, or by metabolic adaptation to salt stress that remain to be elucidated. A potential salinity effect on dD values of aquatic lipids requires further examination, since this would impact on the interpretation of downcore isotopic data in paleohydrologic studies. (C) 2017 Elsevier Ltd. All rights reserved.}, language = {en} } @article{AliGiurcoArndtetal.2017, author = {Ali, Saleem H. and Giurco, Damien and Arndt, Nicholas and Nickless, Edmund and Brown, Graham and Demetriades, Alecos and Durrheim, Ray and Enriquez, Maria Amelia and Kinnaird, Judith and Littleboy, Anna and Meinert, Lawrence D. and Oberh{\"a}nsli, Roland and Salem, Janet and Schodde, Richard and Schneider, Gabi and Vidal, Olivier and Yakovleva, Natalia}, title = {Mineral supply for sustainable development requires resource governance}, series = {Nature : the international weekly journal of science}, volume = {543}, journal = {Nature : the international weekly journal of science}, publisher = {Nature Publ. Group}, address = {London}, issn = {0028-0836}, doi = {10.1038/nature21359}, pages = {367 -- 372}, year = {2017}, abstract = {Successful delivery of the United Nations sustainable development goals and implementation of the Paris Agreement requires technologies that utilize a wide range of minerals in vast quantities. Metal recycling and technological change will contribute to sustaining supply, but mining must continue and grow for the foreseeable future to ensure that such minerals remain available to industry. New links are needed between existing institutional frameworks to oversee responsible sourcing of minerals, trajectories for mineral exploration, environmental practices, and consumer awareness of the effects of consumption. Here we present, through analysis of a comprehensive set of data and demand forecasts, an interdisciplinary perspective on how best to ensure ecologically viable continuity of global mineral supply over the coming decades.}, language = {en} } @article{AminovDingMamadjonovetal.2017, author = {Aminov, Jovid and Ding, Lin and Mamadjonov, Yunus and Dupont-Nivet, Guillaume and Aminov, Jamshed and Zhang, Li-Yun and Yoqubov, Shokirjon and Aminov, Javhar and Abdulov, Sherzod}, title = {Pamir Plateau formation and crustal thickening before the India-Asia collision inferred from dating and petrology of the 110-92 Ma Southern Pamir volcanic sequence}, series = {Gondwana research : international geoscience journal ; official journal of the International Association for Gondwana Research}, volume = {51}, journal = {Gondwana research : international geoscience journal ; official journal of the International Association for Gondwana Research}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1342-937X}, doi = {10.1016/j.gr.2017.08.003}, pages = {310 -- 326}, year = {2017}, abstract = {The formation of the Pamir is a key component of the India-Asia collision with major implications for lithospheric processes, plateau formation, land-sea configurations and associated climate changes. Although the formation of the Pamir is traditionally linked to Cenozoic processes associated with the India-Asia collision, the contribution of the Mesozoic tectonic evolution remains poorly understood. The Pamir was formed by the suturing of Gondwanan terranes to the south margin of Eurasia, however, the timing and tectonic mechanisms associated with this Mesozoic accretion remain poorly constrained. These processes are recorded by several igneous belts within these terranes, which are not well studied. Within the Southern Pamir, the Albian-Turonian volcanic rocks and comagmatic plutons of the Kyzylrabat Igneous Complex (KIC) provide an important and still unconstrained record of the Pamir evolution. Here we provide the age, origin and the geodynamic setting of the KIC volcanics by studying their petrology, zircon U-Pb geochronology, geochemistry and isotope composition.17 samples from the KIC volcanics yield U-Pb ages spanning from 92 to 110 Ma. The volcanics are intermediate to acidic in composition (SiO2 = 56-69 wt\%) and exhibit high-K calc-alkaline and shoshonitic affinity (K2O/Na2O = 12.2 wt\%). They show enrichment in LILE and LREE and depletion in HFSE and HREE with negative Ta, Ti and Nb anomalies, suggesting an arc-related tectonic setting for their formation. Low sNd(t) values (from 9.1 to 4.7), relatively high Sr-87/Sr-86(i) ratios (0.7069-0.7096) and broad range of zircon stif values (from 22.6 to 1.5) suggest a mixture of different magma sources. These features suggest that volcanics were derived by crustal under- or intraplating of an enriched subduction-related mantle shoshonitic magmas, by heating and partial melting of the lower crust, and by mixing of both magma components. Our results further imply that the KIC volcanics represent a shoshonitic suite typical of an evolution from active continental arc to post-collisional setting with a steepening of the Benioff zone and thickening of the crust toward the back-arc. This setting is best explained by the subduction- collision transition along the Shyok suture due to accretion of the Kohistan island arc to the Karakoram. This suggests that a significant part of the crustal shortening and thickening accommodated in the Pamir occurred in the Mesozoic before the India-Asia collision with implications for regional tectonic models. This further suggests the Pamir was already a major topographic feature with potentially important paleoclimate forcing such as the monsoonal circulation. (C) 2017 International Association for Gondwana Research. Published by Elsevier B.V. All rights reserved.}, language = {en} } @article{AngermannJackischAllroggenetal.2017, author = {Angermann, Lisa and Jackisch, Conrad and Allroggen, Niklas and Sprenger, Matthias and Zehe, Erwin and Tronicke, Jens and Weiler, Markus and Blume, Theresa}, title = {Form and function in hillslope hydrology: characterization of subsurface flow based on response observations}, series = {Hydrology and earth system sciences : HESS}, volume = {21}, journal = {Hydrology and earth system sciences : HESS}, publisher = {Copernicus}, address = {G{\"o}ttingen}, issn = {1027-5606}, doi = {10.5194/hess-21-3727-2017}, pages = {3727 -- 3748}, year = {2017}, abstract = {The phrase form and function was established in architecture and biology and refers to the idea that form and functionality are closely correlated, influence each other, and co-evolve. We suggest transferring this idea to hydrological systems to separate and analyze their two main characteristics: their form, which is equivalent to the spatial structure and static properties, and their function, equivalent to internal responses and hydrological behavior. While this approach is not particularly new to hydrological field research, we want to employ this concept to explicitly pursue the question of what information is most advantageous to understand a hydrological system. We applied this concept to subsurface flow within a hillslope, with a methodological focus on function: we conducted observations during a natural storm event and followed this with a hillslope-scale irrigation experiment. The results are used to infer hydrological processes of the monitored system. Based on these findings, the explanatory power and conclusiveness of the data are discussed. The measurements included basic hydrological monitoring methods, like piezometers, soil moisture, and discharge measurements. These were accompanied by isotope sampling and a novel application of 2-D time-lapse GPR (ground-penetrating radar). The main finding regarding the processes in the hillslope was that preferential flow paths were established quickly, despite unsaturated conditions. These flow paths also caused a detectable signal in the catchment response following a natural rainfall event, showing that these processes are relevant also at the catchment scale. Thus, we conclude that response observations (dynamics and patterns, i.e., indicators of function) were well suited to describing processes at the observational scale. Especially the use of 2-D time-lapse GPR measurements, providing detailed subsurface response patterns, as well as the combination of stream-centered and hillslope-centered approaches, allowed us to link processes and put them in a larger context. Transfer to other scales beyond observational scale and generalizations, however, rely on the knowledge of structures (form) and remain speculative. The complementary approach with a methodological focus on form (i.e., structure exploration) is presented and discussed in the companion paper by Jackisch et al. (2017).}, language = {en} } @article{AramayoGuzmanHongnetal.2017, author = {Aramayo, Alejandro and Guzman, Silvina and Hongn, Fernando D. and del Papa, Cecilia and Montero-Lopez, Carolina and Sudo, Masafumi}, title = {A Middle Miocene (13.5-12 Ma) deformational event constrained by volcanism along the Puna-Eastern Cordillera border, NW Argentina}, series = {Tectonophysics : international journal of geotectonics and the geology and physics of the interior of the earth}, volume = {703}, journal = {Tectonophysics : international journal of geotectonics and the geology and physics of the interior of the earth}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0040-1951}, doi = {10.1016/j.tecto.2017.02.018}, pages = {9 -- 22}, year = {2017}, abstract = {The features of Middle Miocene deposits in the Puna-Eastern Cordillera transition (Valles Calchaquies) indicate that Cenozoic deformation, sedimentation and volcanism follow a complex spatiotemporal relationship. The intense volcanic activity recorded in the eastern Puna border between 14 and 11.5 Ma coincides with the occurrence of one of the most important deformation events of the Neogene tectonic evolution in the region. Studies performed across the Puna-Eastern Cordillera transition show different relationships between volcanic deposits of ca. 13.5-12.1 Ma and the Oligocene-Miocene Angastaco Formation. In this paper we describe the ash-flow tuff deposits which are the first of this type found concordant in the sedimentary fill of Valles Calchaquies. Several analyses performed on these pyroclastic deposits allow a correlation to be made with the Alto de Las Lagunas Ignimbrite (ca. 13.5 Ma) of the Pucarilla-Cerro Tipillas Volcanic Complex located in the Puna. Outcrops of the ca. 13.5 Ma pyroclastic deposits are recognised within the Puna and the Valle Calchaqui. However, in the southern prolongation of the Valle de Hualfin (Tiopampa-Pucarilla depression) that separates the Puna from the Valle Calchaqui at these latitudes, these deposits are partially eroded and buried, and thus their occurrence is recorded only by abundant volcanic clasts included in conglomerates of the Angastaco Formation. The sedimentation of the Angastaco Formation was aborted at ca. 12 Ma in the Tiopampa-Pucarilla depression by the Pucarilla Ignimbrite, which unconformably covers the synorogenic units. On the contrary, in the Valle Calchaqui the sedimentation of the Angastaco Formation continued until the Late Miocene. The different relationships between the Miocene Angastaco Formation and the ignimbrites with ages of ca. 13.5 and ca. 12 Ma reveal that in this short period (-1.5 m.y.) a significant deformation event took place and resulted in marked palaeogeographic changes, as evidenced by stratigraphic-sedimentological and chronological records in the Angastaco Formation. (C) 2017 Elsevier B.V. All rights reserved.}, language = {en} } @misc{AroduduHelmingWiggeringetal.2017, author = {Arodudu, Oludunsin Tunrayo and Helming, Katharina and Wiggering, Hubert and Voinov, Alexey}, title = {Bioenergy from low-intensity agricultural systems}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-400403}, pages = {18}, year = {2017}, abstract = {In light of possible future restrictions on the use of fossil fuel, due to climate change obligations and continuous depletion of global fossil fuel reserves, the search for alternative renewable energy sources is expected to be an issue of great concern for policy stakeholders. This study assessed the feasibility of bioenergy production under relatively low-intensity conservative, eco-agricultural settings (as opposed to those produced under high-intensity, fossil fuel based industrialized agriculture). Estimates of the net energy gain (NEG) and the energy return on energy invested (EROEI) obtained from a life cycle inventory of the energy inputs and outputs involved reveal that the energy efficiency of bioenergy produced in low-intensity eco-agricultural systems could be as much as much as 448.5-488.3 GJ·ha-1 of NEG and an EROEI of 5.4-5.9 for maize ethanol production systems, and as much as 155.0-283.9 GJ·ha-1 of NEG and an EROEI of 14.7-22.4 for maize biogas production systems. This is substantially higher than for industrialized agriculture with a NEG of 2.8-52.5 GJ·ha-1 and an EROEI of 1.2-1.7 for maize ethanol production systems, as well as a NEG of 59.3-188.7 GJ·ha-1 and an EROEI of 2.2-10.2 for maize biogas production systems. Bioenergy produced in low-intensity eco-agricultural systems could therefore be an important source of energy with immense net benefits for local and regional end-users, provided a more efficient use of the co-products is ensured.}, language = {en} } @article{ArrowsmithCrosbyKorzhenkovetal.2017, author = {Arrowsmith, J. Ramon and Crosby, Christopher J. and Korzhenkov, Andrey M. and Mamyrov, Ernest and Povolotskaya, Irina and Guralnik, Benny and Landgraf, Angela}, title = {Surface rupture of the 1911 Kebin (Chon-Kemin) earthquake, Northern Tien Shan, Kyrgyzstan}, series = {Seismicity, fault rupture and earthquake hazards in slowly deforming regions}, volume = {432}, journal = {Seismicity, fault rupture and earthquake hazards in slowly deforming regions}, publisher = {The Geological Society}, address = {London}, isbn = {978-1-86239-745-3}, issn = {0305-8719}, doi = {10.1144/SP432.10}, pages = {233 -- 253}, year = {2017}, abstract = {The 1911 Chon-Kemin (Kebin) earthquake culminated c. 30 years of remarkable earthquakes in the northern Tien Shan (Kyrgyzstan and Kazakhstan). Building on prior mapping of the event, we traced its rupture in the field and measured more than 50 offset landforms. Cumulative fault rupture length is >155-195 km along 13 fault patches comprising six sections. The patches are separated by changes of dip magnitude or dip direction, or by 4-10 km-wide stepovers. One <40 km section overlaps and is parallel to the main north-dipping rupture but is 7 km north and dips opposite (south). Both ends of the rupture are along mountain front thrust faults demonstrating late Quaternary activity. We computed the moment from each fault patch using the surface fault traces, dip inferred from the traces, 20 km seismogenic thickness, rigidity of 3.3 x 10(10) N m(-2) and dip slip converted from our observations of the largely reverse sense of motion vertical offsets. The discontinuous patches with c. 3-4 m average slip and peak slip of <14 m yield a seismic moment of 4.6 x 10(20) Nm (M-w 7.78) to 7.4 x 10(20) Nm (M-w 7.91). The majority of moment was released along the inner eastern rupture segments. This geological moment is lower by a factor of 1.5 from that determined from teleseismic data.}, language = {en} } @article{AyguelOberhaensli2017, author = {Ayg{\"u}l, Mesut and Oberh{\"a}nsli, Roland}, title = {Tectonic Stacking of HP/LT Metamorphic Rocks in Accretionary Wedges and the Role of Shallowing Slab-Mantle Decoupling}, series = {Tectonics}, volume = {36}, journal = {Tectonics}, publisher = {American Geophysical Union}, address = {Washington}, issn = {0278-7407}, doi = {10.1002/2017TC004689}, pages = {2332 -- 2346}, year = {2017}, abstract = {High-pressure/low-temperature (HP/LT) chloritoid-bearing micaschists crop out widely in the central part of northern Turkey and represent deep-seated subduction-accretionary complexes. Three peak metamorphic assemblages are identified in the area studied: (1) garnet-chloritoid-glaucophane with pseudomorphs after lawsonite; (2) chloritoid with pseudomorphs after glaucophane; and (3) chloritoid with pseudomorphs after jadeite in addition to phengite, paragonite, quartz, chlorite, rutile, and apatite. The latter is interpreted as transformation of a chloritoid + glaucophane assemblage to chloritoid + jadeite with increasing pressure; PT modeling indicates similar to 17 and 22-25 kbars for the two peak parageneses. The diversity of peak metamorphic assemblages and the PT estimates suggest that basal accretion occurred at different depths within the wedge. The depth of the basal accretion is possibly controlled by the slab-mantle decoupling depth. Stretching and thinning of the lithospheric fore arc induced by the slab rollback possibly caused shallowing of the slab-mantle decoupling depth which limited depth of the basal accretion from 70-80km to similar to 55km within the subduction channel. A slab-mantle coupling depth-controlled basal accretion may also explain the scarcity of eclogite and high-grade blueschist facies metamorphic rocks in active intraoceanic subduction zones. Because the overriding plate is young and hot in intraoceanic subductions, the slab and mantle are coupled at a relatively shallow depth before eclogitization of the oceanic crust. This prevents accretion and exhumation of eclogite along the subduction channel.}, language = {en} } @article{BaesSobolev2017, author = {Baes, Marzieh and Sobolev, Stephan Vladimir}, title = {Mantle Flow as a Trigger for Subduction Initiation: A Missing Element of the Wilson Cycle Concept}, series = {Geochemistry, geophysics, geosystems}, volume = {18}, journal = {Geochemistry, geophysics, geosystems}, publisher = {American Geophysical Union}, address = {Washington}, issn = {1525-2027}, doi = {10.1002/2017GC006962}, pages = {4469 -- 4486}, year = {2017}, abstract = {The classical Wilson Cycle concept, describing repeated opening and closing of ocean basins, hypothesizes spontaneous conversion of passive continental margins into subduction zones. This process, however, is impeded by the high strength of passive margins, and it has never occurred in Cenozoic times. Here using thermomechanical models, we show that additional forcing, provided by mantle flow, which is induced by neighboring subduction zones and midmantle slab remnants, can convert a passive margin into a subduction zone. Models suggest that this is a long-term process, thus explaining the lack of Cenozoic examples. We speculate that new subduction zones may form in the next few tens of millions of years along the Argentine passive margin and the U.S. East Coast. Mantle suction force can similarly trigger subduction initiation along large oceanic fracture zones. We propose that new subduction zones will preferentially originate where subduction zones were active in the past, thus explaining the remarkable colocation of subduction zones during at least the last 400 Myr.}, language = {en} } @article{BallatoCifelliHeidarzadehetal.2017, author = {Ballato, Paolo and Cifelli, Francesca and Heidarzadeh, Ghasem and Ghassemi, Mohammad R. and Wickert, Andrew D. and Hassanzadeh, Jamshid and Dupont-Nivet, Guillaume and Balling, Philipp and Sudo, Masafumi and Zeilinger, Gerold and Schmitt, Axel K. and Mattei, Massimo and Strecker, Manfred}, title = {Tectono-sedimentary evolution of the northern Iranian Plateau: insights from middle-late Miocene foreland-basin deposits}, series = {Basin research}, volume = {29}, journal = {Basin research}, publisher = {Wiley}, address = {Hoboken}, issn = {0950-091X}, doi = {10.1111/bre.12180}, pages = {417 -- 446}, year = {2017}, abstract = {Sedimentary basins in the interior of orogenic plateaus can provide unique insights into the early history of plateau evolution and related geodynamic processes. The northern sectors of the Iranian Plateau of the Arabia-Eurasia collision zone offer the unique possibility to study middle-late Miocene terrestrial clastic and volcaniclastic sediments that allow assessing the nascent stages of collisional plateau formation. In particular, these sedimentary archives allow investigating several debated and poorly understood issues associated with the long-term evolution of the Iranian Plateau, including the regional spatio-temporal characteristics of sedimentation and deformation and the mechanisms of plateau growth. We document that middle-late Miocene crustal shortening and thickening processes led to the growth of a basement-cored range (Takab Range Complex) in the interior of the plateau. This triggered the development of a foreland-basin (Great Pari Basin) to the east between 16.5 and 10.7Ma. By 10.7Ma, a fast progradation of conglomerates over the foreland strata occurred, most likely during a decrease in flexural subsidence triggered by rock uplift along an intraforeland basement-cored range (Mahneshan Range Complex). This was in turn followed by the final incorporation of the foreland deposits into the orogenic system and ensuing compartmentalization of the formerly contiguous foreland into several intermontane basins. Overall, our data suggest that shortening and thickening processes led to the outward and vertical growth of the northern sectors of the Iranian Plateau starting from the middle Miocene. This implies that mantle-flow processes may have had a limited contribution toward building the Iranian Plateau in NW Iran.}, language = {en} } @article{BaroniZinkKumaretal.2017, author = {Baroni, Gabriele and Zink, Matthias and Kumar, Rohini and Samaniego, Luis and Attinger, Sabine}, title = {Effects of uncertainty in soil properties on simulated hydrological states and fluxes at different spatio-temporal scales}, series = {Hydrology and earth system sciences : HESS}, volume = {21}, journal = {Hydrology and earth system sciences : HESS}, publisher = {Copernicus}, address = {G{\"o}ttingen}, issn = {1027-5606}, doi = {10.5194/hess-21-2301-2017}, pages = {2301 -- 2320}, year = {2017}, abstract = {Soil properties show high heterogeneity at different spatial scales and their correct characterization remains a crucial challenge over large areas. The aim of the study is to quantify the impact of different types of uncertainties that arise from the unresolved soil spatial variability on simulated hydrological states and fluxes. Three perturbation methods are presented for the characterization of uncertainties in soil properties. The methods are applied on the soil map of the upper Neckar catchment (Germany), as an example. The uncertainties are propagated through the distributed mesoscale hydrological model (mHM) to assess the impact on the simulated states and fluxes. The model outputs are analysed by aggregating the results at different spatial and temporal scales. These results show that the impact of the different uncertainties introduced in the original soil map is equivalent when the simulated model outputs are analysed at the model grid resolution (i.e. 500 m). However, several differences are identified by aggregating states and fluxes at different spatial scales (by subcatchments of different sizes or coarsening the grid resolution). Streamflow is only sensitive to the perturbation of long spatial structures while distributed states and fluxes (e.g. soil moisture and groundwater recharge) are only sensitive to the local noise introduced to the original soil properties. A clear identification of the temporal and spatial scale for which finer-resolution soil information is (or is not) relevant is unlikely to be universal. However, the comparison of the impacts on the different hydrological components can be used to prioritize the model improvements in specific applications, either by collecting new measurements or by calibration and data assimilation approaches. In conclusion, the study underlines the importance of a correct characterization of uncertainty in soil properties. With that, soil maps with additional information regarding the unresolved soil spatial variability would provide strong support to hydrological modelling applications.}, language = {en} } @article{BartholdTurnerElsenbeeretal.2017, author = {Barthold, Frauke Katrin and Turner, Benjamin L. and Elsenbeer, Helmut and Zimmermann, Alexander}, title = {A hydrochemical approach to quantify the role of return flow in a surface flow-dominated catchment}, series = {Hydrological processes}, volume = {31}, journal = {Hydrological processes}, number = {5}, publisher = {Wiley}, address = {Hoboken}, issn = {0885-6087}, doi = {10.1002/hyp.11083}, pages = {1018 -- 1033}, year = {2017}, abstract = {Stormflow generation in headwater catchments dominated by subsurface flow has been studied extensively, yet catchments dominated by surface flow have received less attention. We addressed this by testing whether stormflow chemistry is controlled by either (a) the event-water signature of overland flow, or (b) the pre-event water signature of return flow. We used a high-resolution hydrochemical data set of stormflow and end-members of multiple storms in an end-member mixing analysis to determine the number of end-members needed to explain stormflow, characterize and identify potential end-members, calculate their contributions to stormflow, and develop a conceptual model of stormflow. The arrangement and relative positioning of end-members in stormflow mixing space suggest that saturation excess overland flow (26-48\%) and return flow from two different subsurface storage pools (17-53\%) are both similarly important for stormflow. These results suggest that pipes and fractures are important flow paths to rapidly release stored water and highlight the value of within-event resolution hydrochemical data to assess the full range and dynamics of flow paths.}, language = {en} } @article{BaumbachSiegmundMittermeieretal.2017, author = {Baumbach, Lukas and Siegmund, Jonatan F. and Mittermeier, Magdalena and Donner, Reik Volker}, title = {Impacts of temperature extremes on European vegetation during the growing season}, series = {Biogeosciences}, volume = {14}, journal = {Biogeosciences}, publisher = {Copernicus}, address = {G{\"o}ttingen}, issn = {1726-4170}, doi = {10.5194/bg-14-4891-2017}, pages = {4891 -- 4903}, year = {2017}, abstract = {Temperature is a key factor controlling plant growth and vitality in the temperate climates of the mid-latitudes like in vast parts of the European continent. Beyond the effect of average conditions, the timings and magnitudes of temperature extremes play a particularly crucial role, which needs to be better understood in the context of projected future rises in the frequency and/or intensity of such events. In this work, we employ event coincidence analysis (ECA) to quantify the likelihood of simultaneous occurrences of extremes in daytime land surface temperature anomalies (LSTAD) and the normalized difference vegetation index (NDVI). We perform this analysis for entire Europe based upon remote sensing data, differentiating between three periods corresponding to different stages of plant development during the growing season. In addition, we analyze the typical elevation and land cover type of the regions showing significantly large event coincidences rates to identify the most severely affected vegetation types. Our results reveal distinct spatio-temporal impact patterns in terms of extraordinarily large co-occurrence rates between several combinations of temperature and NDVI extremes. Croplands are among the most frequently affected land cover types, while elevation is found to have only a minor effect on the spatial distribution of corresponding extreme weather impacts. These findings provide important insights into the vulnerability of European terrestrial ecosystems to extreme temperature events and demonstrate how event-based statistics like ECA can provide a valuable perspective on environmental nexuses.}, language = {en} } @article{BehyariMohajjelSobeletal.2017, author = {Behyari, Mahdi and Mohajjel, Mohammad and Sobel, Edward and Rezaeian, Mahnaz and Moayyed, Mohssen and Schmidt, Alexander}, title = {Analysis of exhumation history in Misho Mountains, NW Iran}, series = {Neues Jahrbuch f{\"u}r Geologie und Pal{\"a}ontologie : merged with Neues Jahrbuch f{\"u}r Geol. und Pal{\"a}ont. Monatshefte". Abhandlungen}, volume = {283}, journal = {Neues Jahrbuch f{\"u}r Geologie und Pal{\"a}ontologie : merged with Neues Jahrbuch f{\"u}r Geol. und Pal{\"a}ont. Monatshefte". Abhandlungen}, number = {3}, publisher = {Schweizerbart}, address = {Stuttgart}, issn = {0077-7749}, doi = {10.1127/njgpa/2017/0642}, pages = {291 -- 308}, year = {2017}, abstract = {The Misho complex in Northwest Iran is a prominent topographic massif bounded by well known active faults. Our new structural analysis of this area indicates that faulting has important role in the exhumation of this complex. The conjugate orientation of the North and South Misho Faults caused uplift in the Misho and exhumation of the Precambrian crystalline basement. Our structural and stratigraphic data shows that rapid uplift could have been initiation since the 21-22 Ma and exhumation rate was about 0.16 to 0.24 km/Ma. To refine this age, we performed U/Pb analysis of detrital zircon from the Upper Red Formation using LA-ICP-MS. We conducted AFT analysis on 6 basement samples from the hanging wall and 1 sample from the Upper Red Formation in the footwall NMF. Uplift in the hanging wall of NMF led to resting of sample 916 marl. This geochronologic and thermochronologic data shows that exhumation in the MC is diachronously along strike and affected by faults. The phase of exhumation is documented in the study area and entire Iranian plateau is related to the final closure of the Neo-Tethys and northward motion of the Arabian Plate.}, language = {en} } @article{BernardezPregoVirginiaFilgueirasetal.2017, author = {Bernardez, Patricia and Prego, Ricardo and Virginia Filgueiras, Ana and Ospina-Alvarez, Natalia and Santos-Echeandia, Juan and Angel Alvarez-Vazquez, Miguel and Caetano, Miguel}, title = {Lithogenic sources, composition and intra-annual variability of suspended particulate matter supplied from rivers to the Northern Galician Rias (Bay of Biscay)}, series = {Journal of sea research}, volume = {130}, journal = {Journal of sea research}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1385-1101}, doi = {10.1016/j.seares.2017.05.006}, pages = {73 -- 84}, year = {2017}, abstract = {Scarce research about small European rivers from non-human impacted areas to determine their natural background state has been undertaken. During the annual hydrological cycle of 2008-9 the patterns of particulate supply (SPM, POC, PON, Al, Cd, Co, Cr, Cu, Fe, Ni, Pb, V, Zn) from the rivers Sor, Mera Landro, Lourido and Landoi to the Northern Galician Rias (SW Bay of Biscay) were tackled. No differences in the composition of the SPM were detected for the studied rivers regarding Al, Fe and POC but the relative percentage of particulate trace elements (PTE) discriminate the rivers. So, Cr, Co and Ni in the Lourido, and Landoi rivers, and Cu in the Mera River, are controlled by watershed minerals of Ortegal Geological Complex while for the rest rivers PTE are by granitic and Ollo de Sapo bedrock watershed. Therefore, the imprint of PTE in the parental rocks of the river basins is reflected on the coastal sediments of the Rias. The main process controlling the dynamics and variations of chemical elements in the particulate form is the river discharge. This fact exemplifies that these rivers presents a natural behavior not being highly influenced by anthropogenic activities.}, language = {en} } @article{BernhardtSchwanghartHebbelnetal.2017, author = {Bernhardt, Anne and Schwanghart, Wolfgang and Hebbeln, Dierk and Stuut, Jan-Berend W. and Strecker, Manfred}, title = {Immediate propagation of deglacial environmental change to deep-marine turbidite systems along the Chile convergent margin}, series = {Earth \& planetary science letters}, volume = {473}, journal = {Earth \& planetary science letters}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0012-821X}, doi = {10.1016/j.epsl.2017.05.017}, pages = {190 -- 204}, year = {2017}, abstract = {Understanding how Earth-surface processes respond to past climatic perturbations is crucial for making informed predictions about future impacts of climate change on sediment "uxes. Sedimentary records provide the archives for inferring these processes, but their interpretation is compromised by our incomplete understanding of how sediment-routing systems respond to millennial-scale climate cycles. We analyzed seven sediment cores recovered from marine turbidite depositional sites along the Chile continental margin. The sites span a pronounced arid-to-humid gradient with variable relief and related sediment connectivity of terrestrial and marine environments. These sites allowed us to study event related depositional processes in different climatic and geomorphic settings from the Last Glacial Maximum to the present day. The three sites reveal a steep decline of turbidite deposition during deglaciation. High rates of sea-level rise postdate the decline in turbidite deposition. Comparison with paleoclimate proxies documents that the spatio-temporal sedimentary pattern rather mirrors the deglacial humidity decrease and concomitant warming with no resolvable lag times. Our results let us infer that declining deglacial humidity decreased "uvial sediment supply. This signal propagated rapidly through the highly connected systems into the marine sink in north-central Chile. In contrast, in south-central Chile, connectivity between the Andean erosional zone and the "uvial transfer zone probably decreased abruptly by sediment trapping in piedmont lakes related to deglaciation, resulting in a sudden decrease of sediment supply to the ocean. Additionally, reduced moisture supply may have contributed to the rapid decline of turbidite deposition. These different causes result in similar depositional patterns in the marine sinks. We conclude that turbiditic strata may constitute reliable recorders of climate change across a wide range of climatic zones and geomorphic conditions. However, the underlying causes for similar signal manifestations in the sinks may differ, ranging from maintained high system connectivity to abrupt connectivity loss. (C) 2017 Elsevier B.V. All rights reserved.}, language = {en} }