@phdthesis{Sianipar2020, author = {Sianipar, Johannes Harungguan}, title = {Towards scalable and secure virtual laboratory for cybersecurity e-learning}, doi = {10.25932/publishup-50279}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-502793}, school = {Universit{\"a}t Potsdam}, pages = {xviii, 156}, year = {2020}, abstract = {Distance Education or e-Learning platform should be able to provide a virtual laboratory to let the participants have hands-on exercise experiences in practicing their skill remotely. Especially in Cybersecurity e-Learning where the participants need to be able to attack or defend the IT System. To have a hands-on exercise, the virtual laboratory environment must be similar to the real operational environment, where an attack or a victim is represented by a node in a virtual laboratory environment. A node is usually represented by a Virtual Machine (VM). Scalability has become a primary issue in the virtual laboratory for cybersecurity e-Learning because a VM needs a significant and fix allocation of resources. Available resources limit the number of simultaneous users. Scalability can be increased by increasing the efficiency of using available resources and by providing more resources. Increasing scalability means increasing the number of simultaneous users. In this thesis, we propose two approaches to increase the efficiency of using the available resources. The first approach in increasing efficiency is by replacing virtual machines (VMs) with containers whenever it is possible. The second approach is sharing the load with the user-on-premise machine, where the user-on-premise machine represents one of the nodes in a virtual laboratory scenario. We also propose two approaches in providing more resources. One way to provide more resources is by using public cloud services. Another way to provide more resources is by gathering resources from the crowd, which is referred to as Crowdresourcing Virtual Laboratory (CRVL). In CRVL, the crowd can contribute their unused resources in the form of a VM, a bare metal system, an account in a public cloud, a private cloud and an isolated group of VMs, but in this thesis, we focus on a VM. The contributor must give the credential of the VM admin or root user to the CRVL system. We propose an architecture and methods to integrate or dis-integrate VMs from the CRVL system automatically. A Team placement algorithm must also be investigated to optimize the usage of resources and at the same time giving the best service to the user. Because the CRVL system does not manage the contributor host machine, the CRVL system must be able to make sure that the VM integration will not harm their system and that the training material will be stored securely in the contributor sides, so that no one is able to take the training material away without permission. We are investigating ways to handle this kind of threats. We propose three approaches to strengthen the VM from a malicious host admin. To verify the integrity of a VM before integration to the CRVL system, we propose a remote verification method without using any additional hardware such as the Trusted Platform Module chip. As the owner of the host machine, the host admins could have access to the VM's data via Random Access Memory (RAM) by doing live memory dumping, Spectre and Meltdown attacks. To make it harder for the malicious host admin in getting the sensitive data from RAM, we propose a method that continually moves sensitive data in RAM. We also propose a method to monitor the host machine by installing an agent on it. The agent monitors the hypervisor configurations and the host admin activities. To evaluate our approaches, we conduct extensive experiments with different settings. The use case in our approach is Tele-Lab, a Virtual Laboratory platform for Cyber Security e-Learning. We use this platform as a basis for designing and developing our approaches. The results show that our approaches are practical and provides enhanced security.}, language = {en} } @phdthesis{Dawoud2013, author = {Dawoud, Wesam}, title = {Scalability and performance management of internet applications in the cloud}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-68187}, school = {Universit{\"a}t Potsdam}, year = {2013}, abstract = {Cloud computing is a model for enabling on-demand access to a shared pool of computing resources. With virtually limitless on-demand resources, a cloud environment enables the hosted Internet application to quickly cope when there is an increase in the workload. However, the overhead of provisioning resources exposes the Internet application to periods of under-provisioning and performance degradation. Moreover, the performance interference, due to the consolidation in the cloud environment, complicates the performance management of the Internet applications. In this dissertation, we propose two approaches to mitigate the impact of the resources provisioning overhead. The first approach employs control theory to scale resources vertically and cope fast with workload. This approach assumes that the provider has knowledge and control over the platform running in the virtual machines (VMs), which limits it to Platform as a Service (PaaS) and Software as a Service (SaaS) providers. The second approach is a customer-side one that deals with the horizontal scalability in an Infrastructure as a Service (IaaS) model. It addresses the trade-off problem between cost and performance with a multi-goal optimization solution. This approach finds the scale thresholds that achieve the highest performance with the lowest increase in the cost. Moreover, the second approach employs a proposed time series forecasting algorithm to scale the application proactively and avoid under-utilization periods. Furthermore, to mitigate the interference impact on the Internet application performance, we developed a system which finds and eliminates the VMs suffering from performance interference. The developed system is a light-weight solution which does not imply provider involvement. To evaluate our approaches and the designed algorithms at large-scale level, we developed a simulator called (ScaleSim). In the simulator, we implemented scalability components acting as the scalability components of Amazon EC2. The current scalability implementation in Amazon EC2 is used as a reference point for evaluating the improvement in the scalable application performance. ScaleSim is fed with realistic models of the RUBiS benchmark extracted from the real environment. The workload is generated from the access logs of the 1998 world cup website. The results show that optimizing the scalability thresholds and adopting proactive scalability can mitigate 88\% of the resources provisioning overhead impact with only a 9\% increase in the cost.}, language = {en} } @article{LorenzClemensSchroetteretal.2022, author = {Lorenz, Claas and Clemens, Vera Elisabeth and Schr{\"o}tter, Max and Schnor, Bettina}, title = {Continuous verification of network security compliance}, series = {IEEE transactions on network and service management}, volume = {19}, journal = {IEEE transactions on network and service management}, number = {2}, publisher = {Institute of Electrical and Electronics Engineers}, address = {New York}, issn = {1932-4537}, doi = {10.1109/TNSM.2021.3130290}, pages = {1729 -- 1745}, year = {2022}, abstract = {Continuous verification of network security compliance is an accepted need. Especially, the analysis of stateful packet filters plays a central role for network security in practice. But the few existing tools which support the analysis of stateful packet filters are based on general applicable formal methods like Satifiability Modulo Theories (SMT) or theorem prover and show runtimes in the order of minutes to hours making them unsuitable for continuous compliance verification. In this work, we address these challenges and present the concept of state shell interweaving to transform a stateful firewall rule set into a stateless rule set. This allows us to reuse any fast domain specific engine from the field of data plane verification tools leveraging smart, very fast, and domain specialized data structures and algorithms including Header Space Analysis (HSA). First, we introduce the formal language FPL that enables a high-level human-understandable specification of the desired state of network security. Second, we demonstrate the instantiation of a compliance process using a verification framework that analyzes the configuration of complex networks and devices - including stateful firewalls - for compliance with FPL policies. Our evaluation results show the scalability of the presented approach for the well known Internet2 and Stanford benchmarks as well as for large firewall rule sets where it outscales state-of-the-art tools by a factor of over 41.}, language = {en} }