@article{UlloaIroumePiccoetal.2016, author = {Ulloa, H. and Iroume, A. and Picco, L. and Mohr, Christian Heinrich and Mazzorana, B. and Lenzi, Mario Aristide and Mao, L.}, title = {Spatial analysis of the impacts of the Chaiten volcano eruption (Chile) in three fluvial systems}, series = {Journal of South American earth sciences}, volume = {69}, journal = {Journal of South American earth sciences}, publisher = {Elsevier}, address = {Oxford}, issn = {0895-9811}, doi = {10.1016/j.jsames.2016.04.008}, pages = {213 -- 225}, year = {2016}, abstract = {The eruption of the Chaiten volcano in May 2008 generated morphological and ecological disturbances in adjacent river basins, and the magnitude of these disturbances depended on the type of dominant volcanic process affecting each of them. The aim of this study is to analyse the morphological changes in different periods in river segments of the Blanco, El Amarillo and Rayas river basins located near the Chaiten volcano. These basins suffered disturbances of different intensity and spatial distribution caused by tephra fall, dome collapses and pyroclastic density currents that damaged hillslope forests, widened channels and destroyed island and floodplain vegetation. Changes continued to occur in the fluvial systems in the years following the eruption, as a consequence of the geomorphic processes indirectly induced by the eruption. Channel changes were analyzed by comparing remote images of pre and post eruption conditions. Two periods were considered: the first from 2008 to 2009-2010 associated with the explosive and effusive phases of the eruption and the second that correspond to the post-eruption stage from 2009-2010 to 2013. Following the first phases channel segments widened 91\% (38 m/yr), 6\% (7 m/yr) and 7\% (22 m/yr) for Blanco, Rayas and El Amarillo Rivers, respectively, compared to pre-eruption condition. In the second period, channel segments additionally widened 42\% (8 m/yr), 2\% (2 m/yr) and 5\% (4 m/yr) for Blanco, Rayas and El Amarillo Rivers, respectively. In the Blanco River 62 and 82\% of the islands disappeared in the first and second period, respectively, which is 6-8 times higher than in the El Amarillo approximately twice the Rayas. Sinuosity increased after the eruption only in the Blanco River but the three study channels showed a high braiding intensity mainly during the first post-eruption period. The major disturbances occurred during the eruptive and effusive phases of Chaiten volcano, and the intensity of these disturbances reflects the magnitude of the dominant volcanic processes affecting each basin. Inputs of sediment from dome collapses and pyroclastic density currents and not ash fall seem to explain morphologic channel change magnitudes in the study segments. The resulting knowledge can facilitate land use planning and design of river restoration projects in areas affected by volcanic eruptions disturbances. (C) 2016 Elsevier Ltd. All rights reserved.}, language = {en} } @phdthesis{Bredow2017, author = {Bredow, Eva}, title = {Geodynamic models of plume-ridge interaction}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-411732}, school = {Universit{\"a}t Potsdam}, pages = {104}, year = {2017}, abstract = {According to the classical plume hypothesis, mantle plumes are localized upwellings of hot, buoyant material in the Earth's mantle. They have a typical mushroom shape, consisting of a large plume head, which is associated with the formation of voluminous flood basalts (a Large Igneous Province) and a narrow plume tail, which generates a linear, age-progressive chain of volcanic edifices (a hotspot track) as the tectonic plate migrates over the relatively stationary plume. Both plume heads and tails reshape large areas of the Earth's surface over many tens of millions of years. However, not every plume has left an exemplary record that supports the classical hypothesis. The main objective of this thesis is therefore to study how specific hotspots have created the crustal thickness pattern attributed to their volcanic activities. Using regional geodynamic models, the main chapters of this thesis address the challenge of deciphering the three individual (and increasingly complex) Réunion, Iceland, and Kerguelen hotspot histories, especially focussing on the interactions between the respective plume and nearby spreading ridges. For this purpose, the mantle convection code ASPECT is used to set up three-dimensional numerical models, which consider the specific local surroundings of each plume by prescribing time-dependent boundary conditions for temperature and mantle flow. Combining reconstructed plate boundaries and plate motions, large-scale global flow velocities and an inhomogeneous lithosphere thickness distribution together with a dehydration rheology represents a novel setup for regional convection models. The model results show the crustal thickness pattern produced by the plume, which is compared to present-day topographic structures, crustal thickness estimates and age determinations of volcanic provinces associated with hotspot activity. Altogether, the model results agree well with surface observations. Moreover, the dynamic development of the plumes in the models provide explanations for the generation of smaller, yet characteristic volcanic features that were previously unexplained. Considering the present-day state of a model as a prediction for the current temperature distribution in the mantle, it cannot only be compared to observations on the surface, but also to structures in the Earth's interior as imaged by seismic tomography. More precisely, in the case of the Réunion hotspot, the model demonstrates how the distinctive gap between the Maldives and Chagos is generated due to the combination of the ridge geometry and plume-ridge interaction. Further, the Rodrigues Ridge is formed as the surface expression of a long-distance sublithospheric flow channel between the upwelling plume and the closest ridge segment, confirming the long-standing hypothesis of Morgan (1978) for the first time in a dynamic context. The Réunion plume has been studied in connection with the seismological RHUM-RUM project, which has recently provided new seismic tomography images that yield an excellent match with the geodynamic model. Regarding the Iceland plume, the numerical model shows how plume material may have accumulated in an east-west trending corridor of thin lithosphere across Greenland and resulted in simultaneous melt generation west and east of Greenland. This provides an explanation for the extremely widespread volcanic material attributed to magma production of the Iceland hotspot and demonstrates that the model setup is also able to explain more complicated hotspot histories. The Iceland model results also agree well with newly derived seismic tomographic images. The Kerguelen hotspot has an extremely complex history and previous studies concluded that the plume might be dismembered or influenced by solitary waves in its conduit to produce the reconstructed variable melt production rate. The geodynamic model, however, shows that a constant plume influx can result in a variable magma production rate if the plume interacts with nearby mid-ocean ridges. Moreover, the Ninetyeast Ridge in the model is created by on-ridge activities, while the Kerguelen plume was located beneath the Australian plate. This is also a contrast to earlier studies, which described the Ninetyeast Ridge as the result of the Indian plate passing over the plume. Furthermore, the Amsterdam-Saint Paul Plateau in the model is the result of plume material flowing from the upwelling toward the Southeast Indian Ridge, whereas previous geochemical studies attributed that volcanic province to a separate deep plume. In summary, the three case studies presented in this thesis consistently highlight the importance of plume-ridge interaction in order to reconstruct the overall volcanic hotspot record as well as specific smaller features attributed to a certain hotspot. They also demonstrate that it is not necessary to attribute highly complicated properties to a specific plume in order to account for complex observations. Thus, this thesis contributes to the general understanding of plume dynamics and extends the very specific knowledge about the Réunion, Iceland, and Kerguelen mantle plumes.}, language = {en} }