@article{LontsiGarciaJerezCamiloMolinaVillegasetal.2019, author = {Lontsi, Agostiny Marrios and Garcia-Jerez, Antonio and Camilo Molina-Villegas, Juan and Jose Sanchez-Sesma, Francisco and Molkenthin, Christian and Ohrnberger, Matthias and Kr{\"u}ger, Frank and Wang, Rongjiang and Fah, Donat}, title = {A generalized theory for full microtremor horizontal-to-vertical [H/V(z,f)] spectral ratio interpretation in offshore and onshore environments}, series = {Geophysical journal international}, volume = {218}, journal = {Geophysical journal international}, number = {2}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0956-540X}, doi = {10.1093/gji/ggz223}, pages = {1276 -- 1297}, year = {2019}, abstract = {Advances in the field of seismic interferometry have provided a basic theoretical interpretation to the full spectrum of the microtremor horizontal-to-vertical spectral ratio [H/V(f)]. The interpretation has been applied to ambient seismic noise data recorded both at the surface and at depth. The new algorithm, based on the diffuse wavefield assumption, has been used in inversion schemes to estimate seismic wave velocity profiles that are useful input information for engineering and exploration seismology both for earthquake hazard estimation and to characterize surficial sediments. However, until now, the developed algorithms are only suitable for on land environments with no offshore consideration. Here, the microtremor H/V(z, f) modelling is extended for applications to marine sedimentary environments for a 1-D layered medium. The layer propagator matrix formulation is used for the computation of the required Green's functions. Therefore, in the presence of a water layer on top, the propagator matrix for the uppermost layer is defined to account for the properties of the water column. As an application example we analyse eight simple canonical layered earth models. Frequencies ranging from 0.2 to 50 Hz are considered as they cover a broad wavelength interval and aid in practice to investigate subsurface structures in the depth range from a few meters to a few hundreds of meters. Results show a marginal variation of 8 per cent at most for the fundamental frequency when a water layer is present. The water layer leads to variations in H/V peak amplitude of up to 50 per cent atop the solid layers.}, language = {en} } @article{BaesSobolevQuinteros2018, author = {Baes, Marzieh and Sobolev, Stephan Vladimir and Quinteros, Javier}, title = {Subduction initiation in mid-ocean induced by mantle suction flow}, series = {Geophysical journal international}, volume = {215}, journal = {Geophysical journal international}, number = {3}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0956-540X}, doi = {10.1093/gji/ggy335}, pages = {1515 -- 1522}, year = {2018}, abstract = {Pre-existing weakness zones in the lithosphere such as transform faults/fracture zones and extinct mid-oceanic ridges have been suggested to facilitate subduction initiation in an intra-oceanic environment. Here, we propose that the additional forcing coming from the mantle suction flow is required to trigger the conversion of a fracture zone/transform fault into a converging plate boundary. This suction flow can be induced either from the slab remnants of former converging plate boundaries or/and from slabs of neighbouring active subduction zones. Using 2-D coupled thermo-mechanical models, we show that a sufficiently strong mantle flow is able to convert a fracture zone/transform fault into a subduction zone. However, this process is feasible only if the fracture zone/transform fault is very close to the mid-oceanic ridge. Our numerical model results indicate that time of subduction initiation depends on the velocity, domain size and location of mantle suction flow and age of the oceanic plate.}, language = {en} }