@phdthesis{Ramos2018, author = {Ramos, Catalina}, title = {Structure and petrophysical properties of the Southern Chile subduction zone along 38.25°S from seismic data}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-409183}, school = {Universit{\"a}t Potsdam}, pages = {xvi, 111}, year = {2018}, abstract = {Active and passive source data from two seismic experiments within the interdisciplinary project TIPTEQ (from The Incoming Plate to mega Thrust EarthQuake processes) were used to image and identify the structural and petrophysical properties (such as P- and S-velocities, Poisson's ratios, pore pressure, density and amount of fluids) within the Chilean seismogenic coupling zone at 38.25°S, where in 1960 the largest earthquake ever recorded (Mw 9.5) occurred. Two S-wave velocity models calculated using traveltime and noise tomography techniques were merged with an existing velocity model to obtain a 2D S-wave velocity model, which gathered the advantages of each individual model. In a following step, P- and S-reflectivity images of the subduction zone were obtained using different pre stack and post-stack depth migration techniques. Among them, the recent prestack line-drawing depth migration scheme yielded revealing results. Next, synthetic seismograms modelled using the reflectivity method allowed, through their input 1D synthetic P- and S-velocities, to infer the composition and rocks within the subduction zone. Finally, an image of the subduction zone is given, jointly interpreting the results from this work with results from other studies. The Chilean seismogenic coupling zone at 38.25°S shows a continental crust with highly reflective horizontal, as well as (steep) dipping events. Among them, the Lanalhue Fault Zone (LFZ), which is interpreted to be east-dipping, is imaged to very shallow depths. Some steep reflectors are observed for the first time, for example one near the coast, related to high seismicity and another one near the LFZ. Steep shallow reflectivity towards the volcanic arc could be related to a steep west-dipping reflector interpreted as fluids and/or melts, migrating upwards due to material recycling in the continental mantle wedge. The high resolution of the S-velocity model in the first kilometres allowed to identify several sedimentary basins, characterized by very low P- and S-velocities, high Poisson's ratios and possible steep reflectivity. Such high Poisson's ratios are also observed within the oceanic crust, which reaches the seismogenic zone hydrated due to bending-related faulting. It is interpreted to release water until reaching the coast and under the continental mantle wedge. In terms of seismic velocities, the inferred composition and rocks in the continental crust is in agreement with field geology observations at the surface along the proflle. Furthermore, there is no requirement to call on the existence of measurable amounts of present-day fluids above the plate interface in the continental crust of the Coastal Cordillera and the Central Valley in this part of the Chilean convergent margin. A large-scale anisotropy in the continental crust and upper mantle, previously proposed from magnetotelluric studies, is proposed from seismic velocities. However, quantitative studies on this topic in the continental crust of the Chilean seismogenic zone at 38.25°S do not exist to date.}, language = {en} } @misc{GholamrezaieScheckWenderothSippeletal.2018, author = {Gholamrezaie, Ershad and Scheck-Wenderoth, Magdalena and Sippel, Judith and Strecker, Manfred}, title = {Variability of the geothermal gradient across two differently aged magma-rich continental rifted margins of the Atlantic Ocean}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-409493}, pages = {19}, year = {2018}, abstract = {Abstract. The aim of this study is to investigate the shallow thermal field differences for two differently aged passive continental margins by analyzing regional variations in geothermal gradient and exploring the controlling factors for these variations. Hence, we analyzed two previously published 3-D conductive and lithospheric-scale thermal models of the Southwest African and the Norwegian passive margins. These 3-D models differentiate various sedimentary, crustal, and mantle units and integrate different geophysical data such as seismic observations and the gravity field. We extracted the temperature-depth distributions in 1 km intervals down to 6 km below the upper thermal boundary condition. The geothermal gradient was then calculated for these intervals between the upper thermal boundary condition and the respective depth levels (1, 2, 3, 4, 5, and 6 km below the upper thermal boundary condition). According to our results, the geothermal gradient decreases with increasing depth and shows varying lateral trends and values for these two different margins. We compare the 3-D geological structural models and the geothermal gradient variations for both thermal models and show how radiogenic heat production, sediment insulating effect, and thermal lithosphere-asthenosphere boundary (LAB) depth influence the shallow thermal field pattern. The results indicate an ongoing process of oceanic mantle cooling at the young Norwegian margin compared with the old SW African passive margin that seems to be thermally equilibrated in the present day.}, language = {en} } @phdthesis{Smith2018, author = {Smith, Taylor}, title = {Decadal changes in the snow regime of High Mountain Asia, 1987-2016}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-407120}, school = {Universit{\"a}t Potsdam}, pages = {xiii, 142}, year = {2018}, abstract = {More than a billion people rely on water from rivers sourced in High Mountain Asia (HMA), a significant portion of which is derived from snow and glacier melt. Rural communities are heavily dependent on the consistency of runoff, and are highly vulnerable to shifts in their local environment brought on by climate change. Despite this dependence, the impacts of climate change in HMA remain poorly constrained due to poor process understanding, complex terrain, and insufficiently dense in-situ measurements. HMA's glaciers contain more frozen water than any region outside of the poles. Their extensive retreat is a highly visible and much studied marker of regional and global climate change. However, in many catchments, snow and snowmelt represent a much larger fraction of the yearly water budget than glacial meltwaters. Despite their importance, climate-related changes in HMA's snow resources have not been well studied. Changes in the volume and distribution of snowpack have complex and extensive impacts on both local and global climates. Eurasian snow cover has been shown to impact the strength and direction of the Indian Summer Monsoon -- which is responsible for much of the precipitation over the Indian Subcontinent -- by modulating earth-surface heating. Shifts in the timing of snowmelt have been shown to limit the productivity of major rangelands, reduce streamflow, modify sediment transport, and impact the spread of vector-borne diseases. However, a large-scale regional study of climate impacts on snow resources had yet to be undertaken. Passive Microwave (PM) remote sensing is a well-established empirical method of studying snow resources over large areas. Since 1987, there have been consistent daily global PM measurements which can be used to derive an estimate of snow depth, and hence snow-water equivalent (SWE) -- the amount of water stored in snowpack. The SWE estimation algorithms were originally developed for flat and even terrain -- such as the Russian and Canadian Arctic -- and have rarely been used in complex terrain such as HMA. This dissertation first examines factors present in HMA that could impact the reliability of SWE estimates. Forest cover, absolute snow depth, long-term average wind speeds, and hillslope angle were found to be the strongest controls on SWE measurement reliability. While forest density and snow depth are factors accounted for in modern SWE retrieval algorithms, wind speed and hillslope angle are not. Despite uncertainty in absolute SWE measurements and differences in the magnitude of SWE retrievals between sensors, single-instrument SWE time series were found to be internally consistent and suitable for trend analysis. Building on this finding, this dissertation tracks changes in SWE across HMA using a statistical decomposition technique. An aggregate decrease in SWE was found (10.6 mm/yr), despite large spatial and seasonal heterogeneities. Winter SWE increased in almost half of HMA, despite general negative trends throughout the rest of the year. The elevation distribution of these negative trends indicates that while changes in SWE have likely impacted glaciers in the region, climate change impacts on these two pieces of the cryosphere are somewhat distinct. Following the discussion of relative changes in SWE, this dissertation explores changes in the timing of the snowmelt season in HMA using a newly developed algorithm. The algorithm is shown to accurately track the onset and end of the snowmelt season (70\% within 5 days of a control dataset, 89\% within 10). Using a 29-year time series, changes in the onset, end, and duration of snowmelt are examined. While nearly the entirety of HMA has experienced an earlier end to the snowmelt season, large regions of HMA have seen a later start to the snowmelt season. Snowmelt periods have also decreased in almost all of HMA, indicating that the snowmelt season is generally shortening and ending earlier across HMA. By examining shifts in both the spatio-temporal distribution of SWE and the timing of the snowmelt season across HMA, we provide a detailed accounting of changes in HMA's snow resources. The overall trend in HMA is towards less SWE storage and a shorter snowmelt season. However, long-term and regional trends conceal distinct seasonal, temporal, and spatial heterogeneity, indicating that changes in snow resources are strongly controlled by local climate and topography, and that inter-annual variability plays a significant role in HMA's snow regime.}, language = {en} } @phdthesis{Siegmund2018, author = {Siegmund, Jonatan Frederik}, title = {Quantifying impacts of climate extreme events on vegetation}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-407095}, school = {Universit{\"a}t Potsdam}, pages = {129}, year = {2018}, abstract = {Together with the gradual change of mean values, ongoing climate change is projected to increase frequency and amplitude of temperature and precipitation extremes in many regions of Europe. The impacts of such in most cases short term extraordinary climate situations on terrestrial ecosystems are a matter of central interest of recent climate change research, because it can not per se be assumed that known dependencies between climate variables and ecosystems are linearly scalable. So far, yet, there is a high demand for a method to quantify such impacts in terms of simultaneities of event time series. In the course of this manuscript the new statistical approach of Event Coincidence Analysis (ECA) as well as it's R implementation is introduced, a methodology that allows assessing whether or not two types of event time series exhibit similar sequences of occurrences. Applications of the method are presented, analyzing climate impacts on different temporal and spacial scales: the impact of extraordinary expressions of various climatic variables on tree stem variations (subdaily and local scale), the impact of extreme temperature and precipitation events on the owering time of European shrub species (weekly and country scale), the impact of extreme temperature events on ecosystem health in terms of NDVI (weekly and continental scale) and the impact of El Ni{\~n}o and La Ni{\~n}a events on precipitation anomalies (seasonal and global scale). The applications presented in this thesis refine already known relationships based on classical methods and also deliver substantial new findings to the scientific community: the widely known positive correlation between flowering time and temperature for example is confirmed to be valid for the tails of the distributions while the widely assumed positive dependency between stem diameter variation and temperature is shown to be not valid for very warm and very cold days. The larger scale investigations underline the sensitivity of anthrogenically shaped landscapes towards temperature extremes in Europe and provide a comprehensive global ENSO impact map for strong precipitation events. Finally, by publishing the R implementation of the method, this thesis shall enable other researcher to further investigate on similar research questions by using Event Coincidence Analysis.}, language = {en} }