@misc{SkinnerCoulthardSchwanghartetal.2018, author = {Skinner, Christopher J. and Coulthard, Tom J. and Schwanghart, Wolfgang and Van De Wiel, Marco J. and Hancock, Greg}, title = {Global sensitivity analysis of parameter uncertainty in landscape evolution models}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1084}, issn = {1866-8372}, doi = {10.25932/publishup-46801}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-468013}, pages = {4873 -- 4888}, year = {2018}, abstract = {The evaluation and verification of landscape evolution models (LEMs) has long been limited by a lack of suitable observational data and statistical measures which can fully capture the complexity of landscape changes. This lack of data limits the use of objective function based evaluation prolific in other modelling fields, and restricts the application of sensitivity analyses in the models and the consequent assessment of model uncertainties. To overcome this deficiency, a novel model function approach has been developed, with each model function representing an aspect of model behaviour, which allows for the application of sensitivity analyses. The model function approach is used to assess the relative sensitivity of the CAESAR-Lisflood LEM to a set of model parameters by applying the Morris method sensitivity analysis for two contrasting catchments. The test revealed that the model was most sensitive to the choice of the sediment transport formula for both catchments, and that each parameter influenced model behaviours differently, with model functions relating to internal geomorphic changes responding in a different way to those relating to the sediment yields from the catchment outlet. The model functions proved useful for providing a way of evaluating the sensitivity of LEMs in the absence of data and methods for an objective function approach.}, language = {en} } @misc{MarrucciZeilingerRibolinietal.2018, author = {Marrucci, Monica and Zeilinger, Gerold and Ribolini, Adriano and Schwanghart, Wolfgang}, title = {Origin of knickpoints in an alpine context subject to different perturbing factors, Stura Valley, Maritime Alps (North-Western Italy)}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1070}, issn = {1866-8372}, doi = {10.25932/publishup-47264}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-472642}, pages = {22}, year = {2018}, abstract = {Natural catchments are likely to show the existence of knickpoints in their river networks. The origin and genesis of the knickpoints can be manifold, considering that the present morphology is the result of the interactions of different factors such as tectonic movements, quaternary glaciations, river captures, variable lithology, and base-level changes. We analyzed the longitudinal profiles of the river channels in the Stura di Demonte Valley (Maritime Alps) to identify the knickpoints of such an alpine setting and to characterize their origins. The distribution and the geometry of stream profiles were used to identify the possible causes of the changes in stream gradients and to define zones with genetically linked knickpoints. Knickpoints are key geomorphological features for reconstructing the evolution of fluvial dissected basins, when the different perturbing factors affecting the ideally graded fluvial system have been detected. This study shows that even in a regionally small area, perturbations of river profiles are caused by multiple factors. Thus, attributing (automatically)-extracted knickpoints solely to one factor, can potentially lead to incomplete interpretations of catchment evolution.}, language = {en} }