@misc{GeorgievGrafmuellerBlegeretal.2018, author = {Georgiev, Vasil N. and Grafm{\"u}ller, Andrea and Bl{\´e}ger, David and Hecht, Stefan and Kunstmann, Ruth Sonja and Barbirz, Stefanie and Lipowsky, Reinhard and Dimova, Rumiana}, title = {Area increase and budding in giant vesicles triggered by light}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, volume = {5}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {733}, issn = {1866-8372}, doi = {10.25932/publishup-42629}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-426298}, pages = {9}, year = {2018}, abstract = {Biomembranes are constantly remodeled and in cells, these processes are controlled and modulated by an assortment of membrane proteins. Here, it is shown that such remodeling can also be induced by photoresponsive molecules. The morphological control of giant vesicles in the presence of a water-soluble ortho-tetrafluoroazobenzene photoswitch (F-azo) is demonstrated and it is shown that the shape transformations are based on an increase in membrane area and generation of spontaneous curvature. The vesicles exhibit budding and the buds can be retracted by using light of a different wavelength. In the presence of F-azo, the membrane area can increase by more than 5\% as assessed from vesicle electrodeformation. To elucidate the underlying molecular mechanism and the partitioning of F-azo in the membrane, molecular dynamics simulations are employed. Comparison with theoretically calculated shapes reveals that the budded shapes are governed by curvature elasticity, that the spontaneous curvature can be decomposed into a local and a nonlocal contribution, and that the local spontaneous curvature is about 1/(2.5 mu m). The results show that exo- and endocytotic events can be controlled by light and that these photoinduced processes provide an attractive method to change membrane area and morphology.}, language = {en} } @misc{KunstmannScheidtBuchwaldetal.2018, author = {Kunstmann, Ruth Sonja and Scheidt, Tom and Buchwald, Saskia and Helm, Alexandra and Mulard, Laurence A. and Fruth, Angelika and Barbirz, Stefanie}, title = {Bacteriophage Sf6 Tailspike Protein for Detection of Shigella flexneri Pathogens}, series = {Viruses}, journal = {Viruses}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-417831}, pages = {18}, year = {2018}, abstract = {Bacteriophage research is gaining more importance due to increasing antibiotic resistance. However, for treatment with bacteriophages, diagnostics have to be improved. Bacteriophages carry adhesion proteins, which bind to the bacterial cell surface, for example tailspike proteins (TSP) for specific recognition of bacterial O-antigen polysaccharide. TSP are highly stable proteins and thus might be suitable components for the integration into diagnostic tools. We used the TSP of bacteriophage Sf6 to establish two applications for detecting Shigella flexneri (S. flexneri), a highly contagious pathogen causing dysentery. We found that Sf6TSP not only bound O-antigen of S. flexneri serotype Y, but also the glucosylated O-antigen of serotype 2a. Moreover, mass spectrometry glycan analyses showed that Sf6TSP tolerated various O-acetyl modifications on these O-antigens. We established a microtiter plate-based ELISA like tailspike adsorption assay (ELITA) using a Strep-tag®II modified Sf6TSP. As sensitive screening alternative we produced a fluorescently labeled Sf6TSP via coupling to an environment sensitive dye. Binding of this probe to the S. flexneri O-antigen Y elicited a fluorescence intensity increase of 80\% with an emission maximum in the visible light range. The Sf6TSP probes thus offer a promising route to a highly specific and sensitive bacteriophage TSP-based Shigella detection system.}, language = {en} }