@phdthesis{Sobal2003, author = {Sobal, Neli}, title = {Kolloidale Nanosysteme aus magnetischen und metallischen Materialien : Synthese und Charakterisierung}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-0001071}, school = {Universit{\"a}t Potsdam}, year = {2003}, abstract = {Ein Spezialgebiet der modernen Mikroelektronik ist die Miniaturisierung und Entwicklung von neuen nanostrukturierten und Komposit-Materialen aus 3d-Metallen. Durch geeignete Zusammensetzungen k{\"o}nnen diese sowohl mit einer hohen S{\"a}ttigungsmagnetisierung und Koerzitivfeldst{\"a}rke als mit besserer Oxidationsbest{\"a}ndigkeit im Vergleich zu den reinen Elementen erzielt werden. In der vorliegenden Arbeit werden neue Methoden f{\"u}r die Herstellung von bimetallischen kolloidalen Nanopartikeln vor allem mit einer Kern-H{\"u}lle-Struktur (Kern@H{\"u}lle) pr{\"a}sentiert. Bei der {\"u}berwiegenden Zahl der vorgestellten Reaktionen handelt es sich um die thermische Zersetzung von metallorganischen Verbindungen wie Kobaltcarbonyl, Palladium- und Platinacetylacetonate oder die chemische Reduktion von Metallsalze mit langkettigem Alkohol in organischem L{\"o}sungsmittel. Daneben sind auch Kombinationen aus diesen beiden Verfahren beschrieben. Es wurden Kolloide aus einem reinen Edelmetall (Pt, Pd, Ag) in einem organischen L{\"o}sungsmittel synthetisiert und daraus neue, bisher in dieser Form nicht bekannte Ag@Co-, Pt@Co-, Pd@Co- und Pt@Pd@Co-Nanopartikel gewonnen. Der Kobaltgehalt der Ag@Co-, Teilchen konnte im Bereich von 5 bis 73 At. \% beliebig eingestellt werden. Der mittlere Durchmesser der Ag@Co-Partikel wurde von 5 nm bis 15 nm variiert. Bei der Herstellung von Pt@Co-Teilchen wurde eine unterschiedlich dicke Kobalt-H{\"u}lle von ca. 1,0 bis 2,5 nm erzielt. Im Fall des Palladiums wurden sowohl monodispere als auch polydisperse Pd-Nanopartikel mit einer maximal 1,7-2,0nm dicken Kobalth{\"u}lle synthetisiert. Ein großer Teil dieser Arbeit befasst sich mit den magnetischen Eigenschaften der kolloidalen Teilchen, wobei die SQUID-Magnetometrie und R{\"o}ntgenzirkulardichroismus (XMCD) daf{\"u}r eingesetzt wurden. Weil magnetische Messungen alleine nur indirekte Schl{\"u}sse {\"u}ber die untersuchten Systeme erlauben, wurde dabei besonderer Wert auf die m{\"o}glichst genaue strukturelle Charakterisierung der Proben mittels moderner Untersuchungsmethoden gelegt. R{\"o}ntgendiffraktometrie (XRD), R{\"o}ntgenabsorptionsfeinstruktur- (EXAFS) und UV-Vis-Spektroskopie sowie Transmissionselektronenmikroskopie (TEM) in Kombination mit Elektronen Energieverlustspektroskopie (EELS) und energiedispersive R{\"o}ntgenfluoreszensanalyse (EDX) wurden verwendet.}, language = {de} } @phdthesis{Rusu2004, author = {Rusu, Viorel Marin}, title = {Composite materials made of chitosan and nanosized apatite : preparation and physicochemical characterization}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-2316}, school = {Universit{\"a}t Potsdam}, year = {2004}, abstract = {Taking inspiration from nature, where composite materials made of a polymer matrix and inorganic fillers are often found, e.g. bone, shell of crustaceans, shell of eggs, etc., the feasibility on making composite materials containing chitosan and nanosized hydroxyapatite were investigated. A new preparation approach based on a co-precipitation method has been developed. In its earlier stage of formation, the composite occurs as hydrogel as suspended in aqueous alkaline solution. In order to get solid composites various drying procedures including freeze-drying technique, air-drying at room temperature and at moderate temperatures, between 50oC and 100oC were used. Physicochemical studies showed that the composites exhibit different properties with respect to their structure and composition. IR and Raman spectroscopy probed the presence of both chitosan and hydroxyapatite in the composites. Hydroxyapatite as dispersed in the chitosan matrix was found to be in the nanosize range (15-50 nm) and occurs in a bimodal distribution with respect to its crystallite length. Two types of distribution domains of hydroxyapatite crystallites in the composite matrix such as cluster-like (200-400 nm) and scattered-like domains were identified by the transmission electron microscopy (TEM), X-ray diffraction (XRD) and by confocal scanning laser microscopy (CSLM) measurements. Relaxation NMR experiments on composite hydrogels showed the presence of two types of water sites in their gel networks, such as free and bound water. Mechanical tests showed that the mechanical properties of composites are one order of magnitude less than those of compact bone but comparable to those of porous bone. The enzymatic degradation rates of composites showed slow degradation processes. The yields of degradation were estimated to be less than 10\% by loss of mass, after incubation with lysozyme, for a period of 50 days. Since the composite materials were found biocompatible by the in vivo tests, the simple mode of their fabrication and their properties recommend them as potential candidates for the non-load bearing bone substitute materials.}, language = {en} } @misc{LoehmannsroebenBeckHildebrandtetal.2006, author = {L{\"o}hmannsr{\"o}ben, Hans-Gerd and Beck, Michael and Hildebrandt, Niko and Schm{\"a}lzlin, Elmar and van Dongen, Joost T.}, title = {New challenges in biophotonics : laser-based fluoroimmuno analysis and in-vivo optical oxygen monitoring}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-10120}, year = {2006}, abstract = {Two examples of our biophotonic research utilizing nanoparticles are presented, namely laser-based fluoroimmuno analysis and in-vivo optical oxygen monitoring. Results of the work include significantly enhanced sensitivity of a homogeneous fluorescence immunoassay and markedly improved spatial resolution of oxygen gradients in root nodules of a legume species.}, subject = {Sauerstoff}, language = {en} } @phdthesis{Ba2006, author = {Ba, Jianhua}, title = {Nonaqueous synthesis of metal oxide nanoparticles and their assembly into mesoporous materials}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-10173}, school = {Universit{\"a}t Potsdam}, year = {2006}, abstract = {This thesis mainly consist of two parts, the synthesis of several kinds of technologically interesting crystalline metal oxide nanoparticles via nonaqueous sol-gel process and the formation of mesoporous metal oxides using some of these nanoparticles as building blocks via evaporation induced self-assembly (EISA) technique. In the first part, the experimental procedures and characterization results of successful syntheses of crystalline tin oxide and tin doped indium oxide (ITO) nanoparticles are reported. SnO2 nanoparticles exhibit monodisperse particle size (3.5 nm in average), high crystallinity and particularly high dispersibility in THF, which enable them to become the ideal particulate precursor for the formation of mesoporous SnO2. ITO nanoparticles possess uniform particle morphology, narrow particle size distribution (5-10 nm), high crystallinity as well as high electrical conductivity. The synthesis approaches and characterization of various mesoporous metal oxides, including TiO2, SnO2, mixture of CeO2 and TiO2, mixture of BaTiO3 and SnO2, are reported in the second part of this thesis. Mesoporous TiO2 and SnO2 are presented as highlights of this part. Mesoporous TiO2 was produced in the forms of both films and bulk material. In the case of mesoporous SnO2, the study was focused on the high order of the porous structure. All these mesoporous metal oxides show high crystallinity, high surface area and rather monodisperse pore sizes, which demonstrate the validity of EISA process and the usage of preformed crystalline nanoparticles as nanobuilding blocks (NBBs) to produce mesoporous metal oxides.}, subject = {Nanopartikel}, language = {en} } @phdthesis{Buha2008, author = {Buha, Jelena}, title = {Nonaqueous syntheses of metal oxide and metal nitride nanoparticles}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-18368}, school = {Universit{\"a}t Potsdam}, year = {2008}, abstract = {Nanostructured materials are materials consisting of nanoparticulate building blocks on the scale of nanometers (i.e. 10-9 m). Composition, crystallinity and morphology can enhance or even induce new properties of the materials, which are desirable for todays and future technological applications. In this work, we have shown new strategies to synthesise metal oxide and metal nitride nanomaterials. The first part of the work deals with the study of nonaqueous synthesis of metal oxide nanoparticles. We succeeded in the synthesis of In2O3 nanopartcles where we could clearly influence the morphology by varying the type of the precursors and the solvents; of ZnO mesocrystals by using acetonitrile as a solvent; of transition metal oxides (Nb2O5, Ta2O5 and HfO2) that are particularly hard to obtain on the nanoscale and other technologically important materials. Solvothermal synthesis however is not restricted to formation of oxide materials only. In the second part we show examples of nonaqueous, solvothermal reactions of metal nitrides, but the main focus lies on the investigation of the influence of different morphologies of metal oxide precursors on the formation of the metal nitride nanoparticles. In spite of various reports, the number and variety of nanocrystalline metal nitrides is marginally small by comparison to metal oxides; hence preformed metal oxides as precursors for the preparation of metal nitrides are a logical choice. By reacting oxide nanoparticles with cyanamide, urea or melamine, at temperatures of 800 to 900 °C under nitrogen flow metal nitrides could be obtained. We studied in detail the influence of the starting material and realized that size, crystallinity, type of nitrogen source and temperature play the most important role. We have managed to propose and verify a dissolution-recrystallisation model as the formation mechanism. Furthermore we could show that the initial morphology of the oxides could be retained when ammonia flow was used instead.}, language = {en} } @phdthesis{Karabudak2009, author = {Karabudak, Engin}, title = {Development of MWL-AUC / CCD-C-AUC / SLS-AUC detectors for the analytical ultracentrifuge}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-39921}, school = {Universit{\"a}t Potsdam}, year = {2009}, abstract = {Analytical ultracentrifugation (AUC) has made an important contribution to polymer and particle characterization since its invention by Svedberg (Svedberg and Nichols 1923; Svedberg and Pederson 1940) in 1923. In 1926, Svedberg won the Nobel price for his scientific work on disperse systems including work with AUC. The first important discovery performed with AUC was to show the existence of macromolecules. Since that time AUC has become an important tool to study polymers in biophysics and biochemistry. AUC is an absolute technique that does not need any standard. Molar masses between 200 and 1014 g/mol and particle size between 1 and 5000 nm can be detected by AUC. Sample can be fractionated into its components due to its molar mass, particle size, structure or density without any stationary phase requirement as it is the case in chromatographic techniques. This very property of AUC earns it an important status in the analysis of polymers and particles. The distribution of molar mass, particle sizes and densities can be measured with the fractionation. Different types of experiments can give complementary physicochemical parameters. For example, sedimentation equilibrium experiments can lead to the study of pure thermodynamics. For complex mixtures, AUC is the main method that can analyze the system. Interactions between molecules can be studied at different concentrations without destroying the chemical equilibrium (Kim et al. 1977). Biologically relevant weak interactions can also be monitored (K ≈ 10-100 M-1). An analytical ultracentrifuge experiment can yield the following information: • Molecular weight of the sample • Number of the components in the sample if the sample is not a single component • Homogeneity of the sample • Molecular weight distribution if the sample is not a single component • Size and shape of macromolecules \& particles • Aggregation \& interaction of macromolecules • Conformational changes of macromolecules • Sedimentation coefficient and density distribution Such an extremely wide application area of AUC allows the investigation of all samples consisting of a solvent and a dispersed or dissolved substance including gels, micro gels, dispersions, emulsions and solutions. Another fact is that solvent or pH limitation does not exist for this method. A lot of new application areas are still flourishing, although the technique is 80 years old. In 1970s, 1500 AUC were operational throughout the world. At those times, due to the limitation in detection technologies, experimental results were obtained with photographic records. As time passed, faster techniques such as size exclusion chromatography (SEC), light scattering (LS) or SDS-gel electrophoresis occupied the same research fields with AUC. Due to these relatively new techniques, AUC began to loose its importance. In the 1980s, only a few AUC were in use throughout the world. In the beginning of the 1990s a modern AUC -the Optima XL-A - was released by Beckman Instruments (Giebeler 1992). The Optima XL-A was equipped with a modern computerized scanning absorption detector. The addition of Rayleigh Interference Optics is introduced which is called XL-I AUC. Furthermore, major development in computers made the analysis easier with the help of new analysis software. Today, about 400 XL-I AUC exist worldwide. It is usually applied in the industry of pharmacy, biopharmacy and polymer companies as well as in academic research fields such as biochemistry, biophysics, molecular biology and material science. About 350 core scientific publications which use analytical ultracentrifugation are published every year (source: SciFinder 2008 ) with an increasing number of references (436 reference in 2008). A tremendous progress has been made in method and analysis software after digitalization of experimental data with the release of XL-I. In comparison to the previous decade, data analysis became more efficient and reliable. Today, AUC labs can routinely use sophisticated data analysis methods for determination of sedimentation coefficient distributions (Demeler and van Holde 2004; Schuck 2000; Stafford 1992), molar mass distributions (Brookes and Demeler 2008; Brookes et al. 2006; Brown and Schuck 2006), interaction constants (Cao and Demeler 2008; Schuck 1998; Stafford and Sherwood 2004), particle size distributions with Angstrom resolution (C{\"o}lfen and Pauck 1997) and the simulations determination of size and shape distributions from sedimentation velocity experiments (Brookes and Demeler 2005; Brookes et al. 2006). These methods are also available in powerful software packages that combines various methods, such as, Ultrascan (Demeler 2005), Sedift/Sedphat (Schuck 1998; Vistica et al. 2004) and Sedanal (Stafford and Sherwood 2004). All these powerful packages are free of charge. Furthermore, Ultrascans source code is licensed under the GNU Public License (http://www.gnu.org/copyleft/gpl.html). Thus, Ultrascan can be further improved by any research group. Workshops are organized to support these software packages. Despite of the tremendous developments in data analysis, hardware for the system has not developed much. Although there are various user developed detectors in research laboratories, they are not commercially available. Since 1992, only one new optical system called "the fluorescence optics" (Schmidt and Reisner, 1992, MacGregor et al. 2004, MacGregor, 2006, Laue and Kroe, in press) has been commercialized. However, except that, there has been no commercially available improvement in the optical system. The interesting fact about the current hardware of the XL-I is that it is 20 years old, although there has been an enormous development in microelectronics, software and in optical systems in the last 20 years, which could be utilized for improved detectors. As examples of user developed detector, Bhattacharyya (Bhattacharyya 2006) described a Multiwavelength-Analytical Ultracentrifuge (MWL-AUC), a Raman detector and a small angle laser light scattering detector in his PhD thesis. MWL-AUC became operational, but a very high noise level prevented to work with real samples. Tests with the Raman detector were not successful due to the low light intensity and thus high integration time is required. The small angle laser light scattering detector could only detect latex particles but failed to detect smaller particles and molecules due to low sensitivity of the detector (a photodiode was used as detector). The primary motivation of this work is to construct a detector which can measure new physico-chemical properties with AUC with a nicely fractionated sample in the cell. The final goal is to obtain a multiwavelength detector for the AUC that measures complementary quantities. Instrument development is an option for a scientist only when there is a huge potential benefit but there is no available commercial enterprise developing appropriate equipment, or if there is not enough financial support to buy it. The first case was our motivation for developing detectors for AUC. Our aim is to use today's technological advances in microelectronics, programming, mechanics in order to develop new detectors for AUC and improve the existing MWL detector to routine operation mode. The project has multiple aspects which can be listed as mechanical, electronical, optical, software, hardware, chemical, industrial and biological. Hence, by its nature it is a multidisciplinary project. Again by its nature it contains the structural problem of its kind; the problem of determining the exact discipline to follow at each new step. It comprises the risk of becoming lost in some direction. Having that fact in mind, we have chosen the simplest possible solution to any optical, mechanical, electronic, software or hardware problem we have encountered and we have always tried to see the overall picture. In this research, we have designed CCD-C-AUC (CCD Camera UV/Vis absorption detector for AUC) and SLS-AUC (Static Light Scattering detector for AUC) and tested them. One of the SLS-AUC designs produced successful test results, but the design could not be brought to the operational stage. However, the operational state Multiwavelength Analytical Ultracentrifuge (MWL-AUC) AUC has been developed which is an important detector in the fields of chemistry, biology and industry. In this thesis, the operational state Multiwavelength Analytical Ultracentrifuge (MWL-AUC) AUC is to be introduced. Consequently, three different applications of MWL-AUC to the aforementioned disciplines shall be presented. First of all, application of MWL-AUC to a biological system which is a mixture of proteins lgG, aldolase and BSA is presented. An application of MWL-AUC to a mass-produced industrial sample (β-carotene gelatin composite particles) which is manufactured by BASF AG, is presented. Finally, it is shown how MWL-AUC will impact on nano-particle science by investigating the quantum size effect of CdTe and its growth mechanism. In this thesis, mainly the relation between new technological developments and detector development for AUC is investigated. Pioneering results are obtained that indicate the possible direction to be followed for the future of AUC. As an example, each MWL-AUC data contains thousands of wavelengths. MWL-AUC data also contains spectral information at each radial point. Data can be separated to its single wavelength files and can be analyzed classically with existing software packages. All the existing software packages including Ultrascan, Sedfit, Sedanal can analyze only single wavelength data, so new extraordinary software developments are needed. As a first attempt, Emre Brookes and Borries Demeler have developed mutliwavelength module in order to analyze the MWL-AUC data. This module analyzes each wavelength separately and independently. We appreciate Emre Brookes and Borries Demeler for their important contribution to the development of the software. Unfortunately, this module requires huge amount of computer power and does not take into account the spectral information during the analysis. New software algorithms are needed which take into account the spectral information and analyze all wavelengths accordingly. We would like also invite the programmers of Ultrascan, Sedfit, Sedanal and the other programs, to develop new algorithms in this direction.}, language = {en} } @phdthesis{Stoeckle2010, author = {St{\"o}ckle, Silke}, title = {Thin liquid films with nanoparticles and rod-like ions as models for nanofluidics}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-46370}, school = {Universit{\"a}t Potsdam}, year = {2010}, abstract = {With the rise of nanotechnology in the last decade, nanofluidics has been established as a research field and gained increased interest in science and industry. Natural aqueous nanofluidic systems are very complex, there is often a predominance of liquid interfaces or the fluid contains charged or differently shaped colloids. The effects, promoted by these additives, are far from being completely understood and interesting questions arise with regards to the confinement of such complex fluidic systems. A systematic study of nanofluidic processes requires designing suitable experimental model nano - channels with required characteristics. The present work employed thin liquid films (TLFs) as experimental models. They have proven to be useful experimental tools because of their simple geometry, reproducible preparation, and controllable liquid interfaces. The thickness of the channels can be adjusted easily by the concentration of electrolyte in the film forming solution. This way, channel dimensions from 5 - 100 nm are possible, a high flexibility for an experimental system. TLFs have liquid IFs of different charge and properties and they offer the possibility to confine differently shaped ions and molecules to very small spaces, or to subject them to controlled forces. This makes the foam films a unique "device" available to obtain information about fluidic systems in nanometer dimensions. The main goal of this thesis was to study nanofluidic processes using TLFs as models, or tools, and to subtract information about natural systems plus deepen the understanding on physical chemical conditions. The presented work showed that foam films can be used as experimental models to understand the behavior of liquids in nano - sized confinement. In the first part of the thesis, we studied the process of thinning of thin liquid films stabilized with the non - ionic surfactant n - dodecyl - β - maltoside (β - C₁₂G₂) with primary interest in interfacial diffusion processes during the thinning process dependent on surfactant concentration 64. The surfactant concentration in the film forming solutions was varied at constant electrolyte (NaCl) concentration. The velocity of thinning was analyzed combining previously developed theoretical approaches. Qualitative information about the mobility of the surfactant molecules at the film surfaces was obtained. We found that above a certain limiting surfactant concentration the film surfaces were completely immobile and they behaved as non - deformable, which decelerated the thinning process. This follows the predictions for Reynolds flow of liquid between two non - deformable disks. In the second part of the thesis, we designed a TLF nanofluidic system containing rod - like multivalent ions and compared this system to films containing monovalent ions. We presented first results which recognized for the first time the existence of an additional attractive force in the foam films based on the electrostatic interaction between rod - like ions and oppositely charged surfaces. We may speculate that this is an ion bridging component of the disjoining pressure. The results show that for films prepared in presence of spermidine the transformation of the thicker CF to the thinnest NBF is more probable as films prepared with NaCl at similar conditions of electrostatic interaction. This effect is not a result of specific adsorption of any of the ions at the fluid surfaces and it does not lead to any changes in the equilibrium properties of the CF and NBF. Our hypothesis was proven using the trivalent ion Y3+ which does not show ion bridging. The experimental results are compared to theoretical predictions and a quantitative agreement on the system's energy gain for the change from CF to NBF could be obtained. In the third part of the work, the behavior of nanoparticles in confinement was investigated with respect to their impact on the fluid flow velocity. The particles altered the flow velocity by an unexpected high amount, so that the resulting changes in the dynamic viscosity could not be explained by a realistic change of the fluid viscosity. Only aggregation, flocculation and plug formation can explain the experimental results. The particle systems in the presented thesis had a great impact on the film interfaces due to the stabilizer molecules present in the bulk solution. Finally, the location of the particles with respect to their lateral and vertical arrangement in the film was studied with advanced reflectivity and scattering methods. Neutron Reflectometry studies were performed to investigate the location of nanoparticles in the TLF perpendicular to the IF. For the first time, we study TLFs using grazing incidence small angle X - ray scattering (GISAXS), which is a technique sensitive to the lateral arrangement of particles in confined volumes. This work provides preliminary data on a lateral ordering of particles in the film.}, language = {en} } @phdthesis{Kraupner2011, author = {Kraupner, Alexander}, title = {Neuartige Synthese magnetischer Nanostrukturen: Metallcarbide und Metallnitride der {\"U}bergangsmetalle Fe/Co/Ni}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-52314}, school = {Universit{\"a}t Potsdam}, year = {2011}, abstract = {Magnetische Nanopartikel bieten ein großes Potential, da sie einerseits die Eigenschaften ihrer Bulk-Materialien besitzen und anderseits, auf Grund ihrer Gr{\"o}ße, {\"u}ber komplett unterschiedliche magnetische Eigenschaften verf{\"u}gen k{\"o}nnen; Superparamagnetismus ist eine dieser Eigenschaften. Die meisten etablierten Anwendungen magnetischer Nanopartikel basieren heutzutage auf Eisenoxiden. Diese bieten gute magnetische Eigenschaften, sind chemisch relativ stabil, ungiftig und lassen sich auf vielen Synthesewegen relativ einfach herstellen. Die magnetischen Eigenschaften der Eisenoxide sind materialabh{\"a}ngig aber begrenzt, weshalb nach anderen Verbindungen mit besseren Eigenschaften gesucht werden muss. Eisencarbid (Fe3C) kann eine dieser Verbindungen sein. Dieses besitzt vergleichbare positive Eigenschaften wie Eisenoxid, jedoch viel bessere magnetische Eigenschaften, speziell eine h{\"o}here S{\"a}ttigungsmagnetisierung. Bis jetzt wurde Fe3C haupts{\"a}chlich in Gasphasenabscheidungsprozessen synthetisiert oder als Nebenprodukt bei der Synthese von Kohlenstoffstrukturen gefunden. Eine Methode, mit der gezielt Fe3C-Nanopartikel und andere Metallcarbide synthetisiert werden k{\"o}nnen, ist die „Harnstoff-Glas-Route". Neben den Metallcarbiden k{\"o}nnen mit dieser Methode auch die entsprechenden Metallnitride synthetisiert werden, was die breite Anwendbarkeit der Methode unterstreicht. Die „Harnstoff-Glas-Route" ist eine Kombination eines Sol-Gel-Prozesses mit einer anschließenden carbothermalen Reduktion/Nitridierung bei h{\"o}heren Temperaturen. Sie bietet den Vorteil einer einfachen und schnellen Synthese verschiedener Metallcarbide/nitride. Der Schwerpunkt in dieser Arbeit lag auf der Synthese von Eisencarbiden/nitriden, aber auch Nickel und Kobalt wurden betrachtet. Durch die Variation der Syntheseparameter konnten verschiedene Eisencarbid/nitrid Nanostrukturen synthetisiert werden. Fe3C-Nanopartikel im Gr{\"o}ßenbereich von d = 5 - 10 nm konnten, durch die Verwendung von Eisenchlorid, hergestellt werden. Die Nanopartikel weisen durch ihre geringe Gr{\"o}ße superparamagnetische Eigenschaften auf und besitzen, im Vergleich zu Eisenoxid Nanopartikeln im gleichen Gr{\"o}ßenbereich, eine h{\"o}here S{\"a}ttigungsmagnetisierung. Diese konnten in fortf{\"u}hrenden Experimenten erfolgreich in ionischen Fl{\"u}ssigkeiten und durch ein Polymer-Coating, im w{\"a}ssrigen Medium, dispergiert werden. Desweiteren wurde durch ein Templatieren mit kolloidalem Silika eine mesopor{\"o}se Fe3C-Nanostruktur hergestellt. Diese konnte erfolgreich in der katalytischen Spaltung von Ammoniak getestet werden. Mit der Verwendung von Eisenacetylacetonat konnten neben Fe3C-Nanopartikeln, nur durch Variation der Reaktionsparameter, auch Fe7C3- und Fe3N-Nanopartikel synthetisiert werden. Speziell f{\"u}r die Fe3C-Nanopartikel konnte die S{\"a}ttigungsmagnetisierung, im Vergleich zu den mit Eisenchlorid synthetisierten Nanopartikeln, nochmals erh{\"o}ht werden. Versuche mit Nickelacetat f{\"u}hrten zu Nickelnitrid (Ni3N) Nanokristallen. Eine zus{\"a}tzliche metallische Nickelphase f{\"u}hrte zu einer Selbstorganisation der Partikel in Scheiben-{\"a}hnliche {\"U}berstrukturen. Mittels Kobaltacetat konnten, in Sph{\"a}ren aggregierte, metallische Kobalt Nanopartikel synthetisiert werden. Kobaltcarbid/nitrid war mit den gegebenen Syntheseparametern nicht zug{\"a}nglich.}, language = {de} } @phdthesis{Popovic2011, author = {Popovic, Jelena}, title = {Novel lithium iron phosphate materials for lithium-ion batteries}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-54591}, school = {Universit{\"a}t Potsdam}, year = {2011}, abstract = {Conventional energy sources are diminishing and non-renewable, take million years to form and cause environmental degradation. In the 21st century, we have to aim at achieving sustainable, environmentally friendly and cheap energy supply by employing renewable energy technologies associated with portable energy storage devices. Lithium-ion batteries can repeatedly generate clean energy from stored materials and convert reversely electric into chemical energy. The performance of lithium-ion batteries depends intimately on the properties of their materials. Presently used battery electrodes are expensive to be produced; they offer limited energy storage possibility and are unsafe to be used in larger dimensions restraining the diversity of application, especially in hybrid electric vehicles (HEVs) and electric vehicles (EVs). This thesis presents a major progress in the development of LiFePO4 as a cathode material for lithium-ion batteries. Using simple procedure, a completely novel morphology has been synthesized (mesocrystals of LiFePO4) and excellent electrochemical behavior was recorded (nanostructured LiFePO4). The newly developed reactions for synthesis of LiFePO4 are single-step processes and are taking place in an autoclave at significantly lower temperature (200 deg. C) compared to the conventional solid-state method (multi-step and up to 800 deg. C). The use of inexpensive environmentally benign precursors offers a green manufacturing approach for a large scale production. These newly developed experimental procedures can also be extended to other phospho-olivine materials, such as LiCoPO4 and LiMnPO4. The material with the best electrochemical behavior (nanostructured LiFePO4 with carbon coating) was able to delive a stable 94\% of the theoretically known capacity.}, language = {en} } @phdthesis{Haase2011, author = {Haase, Martin F.}, title = {Modification of nanoparticle surfaces for emulsion stabilization and encapsulation of active molecules for anti-corrosive coatings}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-55413}, school = {Universit{\"a}t Potsdam}, year = {2011}, abstract = {Within this work, three physicochemical methods for the hydrophobization of initially hydrophilic solid particles are investigated. The modified particles are then used for the stabilization of oil-in-water (o/w) emulsions. For all introduced methods electrostatic interactions between strongly or weakly charged groups in the system are es-sential. (i) Short chain alkylammonium bromides (C4 - C12) adsorb on oppositely charged solid particles. Macroscopic contact angle measurements of water droplets under air and hexane on flat silica surfaces in dependency of the surface charge density and alkylchain-length allow the calculation of the surface energy and give insights into the emulsification properties of solid particles modified with alkyltrimethylammonium bromides. The measure-ments show an increase of the contact angle with increasing surface charge density, due to the enhanced adsorp-tion of the oppositely charged alkylammonium bromides. Contact angles are higher for longer alkylchain lengths. The surface energy calculations show that in particular the surface-hexane or surface-air interfacial en-ergy is being lowered upon alkylammonium adsorption, while a significant increase of the surface-water interfa-cial energy occurs only at long alkyl chain lengths and high surface charge densities. (ii) The thickness and the charge density of an adsorbed weak polyelectrolyte layer (e.g. PMAA, PAH) influence the wettability of nanoparticles (e.g. alumina, silica, see Scheme 1(b)). Furthermore, the isoelectric point and the pH range of colloidal stability of particle-polyelectrolyte composites depend on the thickness of the weak polye-lectrolyte layer. Silica nanoparticles with adsorbed PAH and alumina nanoparticles with adsorbed PMAA be-come interfacially active and thus able to stabilize o/w emulsions when the degree of dissociation of the polye-lectrolyte layer is below 80 \%. The average droplet size after emulsification of dodecane in water depends on the thickness and the degree of dissociation of the adsorbed PE-layer. The visualization of the particle-stabilized o/w emulsions by cryogenic SEM shows that for colloidally stable alumina-PMAA composites the oil-water interface is covered with a closely packed monolayer of particles, while for the colloidally unstable case closely packed aggregated particles deposit on the interface. (iii) By emulsifying a mixture of the corrosion inhibitor 8-hydroxyquinoline (8-HQ) and styrene with silica nanoparticles a highly stable o/w emulsion can be obtained in a narrow pH window. The amphoteric character of 8-HQ enables a pH dependent electrostatic interaction with silica nanoparticles, which can render them interfa-cially active. Depending on the concentration and the degree of dissociation of 8-HQ the adsorption onto silica results from electrostatic or aromatic interactions between 8-HQ and the particle-surface. At intermediate amounts of adsorbed 8-HQ the oil wettability of the particles becomes sufficient for stabilizing o/w emulsions. Cryogenic SEM visualization shows that the particles arrange then in a closely packed shell consisting of partly of aggregated domains on the droplet interface. For further increasing amounts of adsorbed 8-HQ the oil wet-tability is reduced again and the particles ability to stabilize emulsions decreases. By the addition of hexadecane to the oil phase the size of the droplets can be reduced down to 200 nm by in-creasing the silica mass fraction. Subsequent polymerization produces corrosion inhibitor filled (20 wt-\%) poly-styrene-silica composite particles. The measurement of the release of 8-hydroxyquinoline shows a rapid increase of 8-hydroxyquinoline in a stirred aqueous solution indicating the release of the total content in less than 5 min-utes. The method is extended for the encapsulation of other organic corrosion inhibitors. The silica-polymer-inhibitor composite particles are then dispersed in a water based alkyd emulsion, and the dispersion is used to coat flat aluminium substrates. After drying and cross-linking the polmer-film Confocal Laser Scanning Micros-copy is employed revealing a homogeneous distribution of the particles in the film. Electrochemical Impedance Spectroscopy in aqueous electrolyte solutions shows that films with aggregated particle domains degrade with time and don't provide long-term corrosion protection of the substrate. However, films with highly dispersed particles have high barrier properties for corrosive species. The comparison of films containing silica-polystyrene composite particles with and without 8-hydroxyquinoline shows higher electrochemical impedances when the inhibitor is present in the film. By applying the Scanning Vibrating Electrode Technique the localized corrosion rate in the fractured area of scratched polymer films containing the silica-polymer-inhibitor composite particles is studied. Electrochemical corrosion cannot be suppressed but the rate is lowered when inhibitor filled composite particles are present in the film. By depositing six polyelectrolyte layers on particle stabilized emulsion droplets their surface morphology changes significantly as shown by SEM visualization. When the oil wettability of the outer polyelectrolyte layer increases, the polyelectrolyte coated droplets can act as emulsion stabilizers themselves by attaching onto bigger oil droplets in a closely packed arrangement. In the presence of 3 mM LaCl3 8-HQ hydrophobized silica particles aggregate strongly on the oil-water inter-face. The application of an ultrasonic field can remove two dimensional shell-compartments from the droplet surface, which are then found in the aqueous bulk phase. Their size ranges up to 1/4th of the spherical particle shell.}, language = {en} } @article{HassReich2011, author = {Hass, Roland and Reich, Oliver}, title = {Photon density wave spectroscopy for dilution-free sizing of highly concentrated nanoparticles during starved-feed polymerization}, series = {ChemPhysChem : a European journal of chemical physics and physical chemistry}, volume = {12}, journal = {ChemPhysChem : a European journal of chemical physics and physical chemistry}, number = {14}, publisher = {Wiley-Blackwell}, address = {Malden}, issn = {1439-4235}, doi = {10.1002/cphc.201100323}, pages = {2572 -- 2575}, year = {2011}, language = {en} } @phdthesis{Bomm2012, author = {Bomm, Jana}, title = {Von Gold Plasmonen und Exzitonen : Synthese, Charakterisierung und Applikationen von Gold Nanopartikeln}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-66402}, school = {Universit{\"a}t Potsdam}, year = {2012}, abstract = {In dieser Arbeit wurden sph{\"a}rische Gold Nanopartikel (NP) mit einem Durchmesser gr{\"o}ßer ~ 2 nm, Gold Quantenpunkte (QDs) mit einem Durchmesser kleiner ~ 2 nm sowie Gold Nanost{\"a}bchen (NRs) unterschiedlicher L{\"a}nge hergestellt und optisch charakterisiert. Zudem wurden zwei neue Synthesevarianten f{\"u}r die Herstellung thermosensitiver Gold QDs entwickelt werden. Sph{\"a}rische Gold NP zeigen eine Plasmonenbande bei ~ 520 nm, die auf die kollektive Oszillation von Elektronen zur{\"u}ckzuf{\"u}hren ist. Gold NRs weisen aufgrund ihrer anisotropen Form zwei Plasmonenbanden auf, eine transversale Plasmonenbande bei ~ 520 nm und eine longitudinale Plasmonenbande, die vom L{\"a}nge-zu-Durchmesser-Verh{\"a}ltnis der Gold NRs abh{\"a}ngig ist. Gold QDs besitzen keine Plasmonenbande, da ihre Elektronen Quantenbeschr{\"a}nkungen unterliegen. Gold QDs zeigen jedoch aufgrund diskreter Energieniveaus und einer Bandl{\"u}cke Photolumineszenz (PL). Die synthetisierten Gold QDs besitzen eine Breitbandlumineszenz im Bereich von ~ 500-800 nm, wobei die Lumineszenz-eigenschaften (Emissionspeak, Quantenausbeute, Lebenszeiten) stark von den Herstellungs-bedingungen und den Oberfl{\"a}chenliganden abh{\"a}ngen. Die PL in Gold QDs ist ein sehr komplexes Ph{\"a}nomen und r{\"u}hrt vermutlich von Singulett- und Triplett-Zust{\"a}nden her. Gold NRs und Gold QDs konnten in verschiedene Polymere wie bspw. Cellulosetriacetat eingearbeitet werden. Polymernanokomposite mit Gold NRs wurden erstmals unter definierten Bedingungen mechanisch gezogen, um Filme mit optisch anisotropen (richtungsabh{\"a}ngigen) Eigenschaften zu erhalten. Zudem wurde das Temperaturverhalten von Gold NRs und Gold QDs untersucht. Es konnte gezeigt werden, dass eine lokale Variation der Gr{\"o}ße und Form von Gold NRs in Polymernanokompositen durch Temperaturerh{\"o}hung auf 225-250 °C erzielt werden kann. Es zeigte sich, dass die PL der Gold QDs stark temperaturabh{\"a}ngig ist, wodurch die PL QY der Proben beim Abk{\"u}hlen (-7 °C) auf knapp 30 \% verdoppelt und beim Erhitzen auf 70 °C nahezu vollst{\"a}ndig gel{\"o}scht werden konnte. Es konnte demonstriert werden, dass die L{\"a}nge der Alkylkette des Oberfl{\"a}chenliganden einen Einfluss auf die Temperaturstabilit{\"a}t der Gold QDs hat. Zudem wurden verschiedene neuartige und optisch anisotrope Sicherheitslabels mit Gold NRs sowie thermosensitive Sicherheitslabel mit Gold QDs entwickelt. Ebenso scheinen Gold NRs und QDs f{\"u}r die und die Optoelektronik (bspw. Datenspeicherung) und die Medizin (bspw. Krebsdiagnostik bzw. -therapie) von großem Interesse zu sein.}, language = {de} } @article{TaubertStangeLietal.2012, author = {Taubert, Andreas and Stange, Franziska and Li, Zhonghao and Junginger, Mathias and G{\"u}nter, Christina and Neumann, Mike and Friedrich, Alwin}, title = {CuO nanoparticles from the Strongly Hydrated Ionic Liquid Precursor (ILP) Tetrabutylammonium Hydroxide evaluation of the Ethanol Sensing Activity}, series = {ACS applied materials \& interfaces}, volume = {4}, journal = {ACS applied materials \& interfaces}, number = {2}, publisher = {American Chemical Society}, address = {Washington}, issn = {1944-8244}, doi = {10.1021/am201427q}, pages = {791 -- 795}, year = {2012}, abstract = {The sensing potential of CuO nanoparticles synthesized via. precipitation from a water/ionic liquid precursor (ILP) mixture was investigated. The particles have a moderate surface area of 66 m(2)/g after synthesis, which decreases upon thermal treatment to below 5 m(2)/g. Transmission electron microscopy confirms crystal growth upon annealing, likely due to sintering effects. The as-synthesized particles can be used for ethanol sensing. The respective sensors show fast response and recovery times of below 10 s and responses greater than 2.3 at 100 ppm of ethanol at 200 degrees C, which is higher than any CuO-based ethanol sensor described so far.}, language = {en} } @misc{Metzke2013, type = {Master Thesis}, author = {Metzke, Sarah}, title = {Synthesis and characterization of transition metal nitrides and carbides for catalysis and electrochemistry application}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-69835}, school = {Universit{\"a}t Potsdam}, year = {2013}, abstract = {It was the goal of this work to explore two different synthesis pathways using green chemistry. The first part of this thesis is focusing on the use of the urea-glass route towards single phase manganese nitride and manganese nitride/oxide nano-composites embedded in carbon, while the second part of the thesis is focusing on the use of the "saccharide route" (namely cellulose, sucrose, glucose and lignin) towards metal (Ni0), metal alloy (Pd0.9Ni0.1, Pd0.5Ni0.5, Fe0.5Ni0.5, Cu0.5Ni0.5 and W0.15Ni0.85) and ternary carbide (Mn0.75Fe2.25C) nanoparticles embedded in carbon. In the interest of battery application, MnN0.43 nanoparticles surrounded by a graphitic shell and embedded in carbon with a high surface area (79 m^2/g) were synthesized, following a previously set route.The comparison of the material characteristics before and after the discharge showed no remarkable difference in terms of composition and just slight differences in the morphological point of view, meaning the particles are stable but agglomerate. The graphitic shell is contributing to the resistance of the material and leads to a fine cyclic stability over 140 cycles of 230 mAh/g after the first charge/discharge and coulombic efficiencies close to 100\%. Due to the low voltage towards Li/Li+ and the low polarization, it might be an attractive anode material for lithium ion batteries. However, the capacity is still noticeably lower than the theoretical value for MnN0.43. A mixture of MnN0.43 and MnO nanoparticles embedded in carbon (surface area 93 m^2/g) was able to improve the cyclic stability to over 160 cycles giving a capacity of 811 mAh/g, which is considerably higher than the capacity of the conventional material graphite (372 mAh/g). This nano-composite seems to agglomerate less during the process of discharge. Interestingly, although the capacity is much higher than of the single phase manganese nitride, the nano-composite seems to only contain MnN0.43 nanoparticles after the process of discharge with no oxide phase to be found. Concerning catalysis application, different metal, metal alloy, and metal carbide nanoparticles were synthesized using the saccharide route. At first, systems that were already investigated before, being Pd0.9Ni0.1, Pd0.5Ni0.5, Fe0.5Ni0.5 and Mn0.75Fe2.25C using cellulose as the carbon source were prepared and tested in an alkylation reaction of toluene with benzylchloride. Unexpectedly, the metal alloys did not show any catalytic activity, but the ternary carbide Mn0.75Fe2.25C showed fine catalytic activity of 98\% conversion after 9 hour reaction time (110 °C). In a second step, the saccharide route was modified towards other carbon sources and carbon to metal ratios in order to improve the homogeneity of the samples and accessibility of the particle surfaces. The used carbon sources sucrose and glucose are similar in their basic structure of carbohydrates, but reducing the (polymeric) chain length. Indeed, the cellulose could be successfully replaced by sucrose and glucose. A lower carbon to metal ratio was found to influence the size, homogeneity and accessibility (as evidenced by TEM) of the samples. Since sucrose is an aliment, glucose is the better choice as a carbon source. Using glucose, the synthesis of Cu0.5Ni0.5 and W0.15Ni0.85 nano-composites was also possible, although the later was never obtained as pure phase. These alloy nano-composites were tested, along with nickel0 nanoparticles also prepared with glucose and on their catalytic activity towards the reduction of phenylacetylene. The results obtained let believe that any (poly) saccharide, including lignin, could be used as carbon source. The nickel0 nano-composites prepared with lignin as a carbon source were tested along with those prepared with cellulose and sucrose for their catalytic activity in the transfer hydrogenation of nitrobenzene (results compared with exposed nickel nanoparticles and nickel supported on carbon) leading to very promising results. Based on the urea-glass route and the saccharide route, simple equipment and transition metals, it was possible to have a one-pot synthesize with scale-up possibilities towards new material that can be applied in catalysis and battery systems.}, language = {en} } @article{DraudeGallaPelsteretal.2013, author = {Draude, F. and Galla, S. and Pelster, Axel and Tentschert, J. and Jungnickel, H. and Haase, Alfred and Mantion, Alexandre and Thuenemann, Andreas F. and Taubert, Andreas and Luch, A. and Arlinghaus, H. F.}, title = {ToF-SIMS and Laser-SNMS analysis of macrophages after exposure to silver nanoparticles}, series = {Surface and interface analysis : an international journal devoted to the development and application of techniques for the analysis surfaces, interfaces and thin films}, volume = {45}, journal = {Surface and interface analysis : an international journal devoted to the development and application of techniques for the analysis surfaces, interfaces and thin films}, number = {1}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {0142-2421}, doi = {10.1002/sia.4902}, pages = {286 -- 289}, year = {2013}, abstract = {Silver nanoparticles (SNPs) are among the most commercialized nanoparticles because of their antibacterial effects. Besides being employed, e. g. as a coatingmaterial for sterile surfaces in household articles and appliances, the particles are also used in a broad range of medical applications. Their antibacterial properties make SNPs especially useful for wound disinfection or as a coating material for prostheses and surgical instruments. Because of their optical characteristics, the particles are of increasing interest in biodetection as well. Despite the widespread use of SNPs, there is little knowledge of their toxicity. Time-of-flight secondary ion mass spectrometry (ToF-SIMS) and laser post-ionization secondary neutral mass spectrometry (Laser-SNMS) were used to investigate the effects of SNPs on human macrophages derived from THP-1 cells in vitro. For this purpose, macrophages were exposed to SNPs. The SNP concentration ranges were chosen with regard to functional impairments of the macrophages. To optimize the analysis of the macrophages, a special silicon wafer sandwich preparation technique was employed; ToF-SIMS was employed to characterize fragments originating from macrophage cell membranes. With the use of this optimized sample preparation method, the SNP-exposed macrophages were analyzed with ToF-SIMS and with Laser-SNMS. With Laser-SNMS, the three-dimensional distribution of SNPs in cells could be readily detected with very high efficiency, sensitivity, and submicron lateral resolution. We found an accumulation of SNPs directly beneath the cell membrane in a nanoparticular state as well as agglomerations of SNPs inside the cells.}, language = {en} } @article{TentschertJungnickelReichardtetal.2014, author = {Tentschert, Jutta and Jungnickel, Harald and Reichardt, Philipp and Leube, Peter and Kretzschmar, Bernd and Taubert, Andreas and Luch, A.}, title = {Identification of nano clay in composite polymers}, series = {Surface and interface analysis : an international journal devoted to the development and application of techniques for the analysis surfaces, interfaces and thin films}, volume = {46}, journal = {Surface and interface analysis : an international journal devoted to the development and application of techniques for the analysis surfaces, interfaces and thin films}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {0142-2421}, doi = {10.1002/sia.5546}, pages = {334 -- 336}, year = {2014}, abstract = {Industrialized food production is in urgent search for alternative packaging materials, which can serve the requirements of a globalized world in terms of longer product shelf lives, reduced freight weight to decrease transport costs, and better barrier functionality to preserve its freshness. Polymer materials containing organically modified nano clay particles as additives are one example for a new generation of packaging materials with specific barrier functionality to actually hit the market. Clay types used for these applications are aluminosilicates, which belong to the mineral group of phyllosilicates. These consist of nano-scaled thin platelets, which are organically modified with quaternary ammonium compounds acting as spacers between the different clay layers, thereby increasing the hydrophobicity of the mineral additive. A variety of different organically modified clays are already available, and the use as additive for food packaging materials is one important application. To ensure valid risk assessments of emerging nano composite polymers used in the food packaging industry, exact analytical characterization of the organically modified clay within the polymer matrix is of paramount importance. Time-of-flight SIMS in combination with multivariate statistical analysis was used to differentiate modified clay reference materials from another. Time-of-flight SIMS spectra of a reference polymer plate, which contained one specific nano clay composite, were acquired. For each modified clay additive, a set of characteristic diagnostic ions could be identified, which then was used to successfully assign unknown clay additives to the corresponding reference material. Thus, the described methodology could be used to define and characterize nano clay within polymer matrices. Copyright (c) 2014 John Wiley \& Sons, Ltd.}, language = {en} } @article{OmorogieBabalolaUnuabonahetal.2014, author = {Omorogie, Martins O. and Babalola, Jonathan Oyebamiji and Unuabonah, Emmanuel Iyayi and Gong, Jian R.}, title = {Hybrid materials from agro-waste and nanoparticles: implications on the kinetics of the adsorption of inorganic pollutants}, series = {Environmental technology}, volume = {35}, journal = {Environmental technology}, number = {5}, publisher = {Routledge, Taylor \& Francis Group}, address = {Abingdon}, issn = {0959-3330}, doi = {10.1080/09593330.2013.839747}, pages = {611 -- 619}, year = {2014}, abstract = {This study is a first-hand report of the immobilization of Nauclea diderrichii seed waste biomass (ND) (an agro-waste) with eco-friendly mesoporous silica (MS) and graphene oxide-MS (GO+MS ) nanoparticles, producing two new hybrid materials namely: MND adsorbent for agro-waste modified with MS and GND adsorbent for agro-waste modified with GO+MS nanoparticles showed improved surface area, pore size and pore volume over those of the agro-waste. The abstractive potential of the new hybrid materials was explored for uptake of Cr(III) and Pb(II) ions. Analysis of experimental data from these new hybrid materials showed increased initial sorption rate of Cr(III) and Pb(II) ions uptake. The amounts of Cr(III) and Pb(II) ions adsorbed by MND and GND adsorbents were greater than those of ND. Modification of N. diderrichii seed waste significantly improved its rate of adsorption and diffusion coefficient for Cr(III) and Pb(II) more than its adsorption capacity. The rate of adsorption of the heavy metal ions was higher with GO+MS nanoparticles than for other adsorbents. Kinetic data were found to fit well the pseudo-second-order and the diffusion-chemisorption kinetic models suggesting that the adsorption of Cr(III) and Pb(II) onto these adsorbents is mainly through chemisorption mechanism. Analysis of kinetic data with the homogeneous particle diffusion kinetic model suggests that particle diffusion (diffusion of ions through the adsorbent) is the rate-limiting step for the adsorption process.}, language = {en} } @article{ZouSchlaad2015, author = {Zou, Hua and Schlaad, Helmut}, title = {Thermoresponsive PNIPAM/Silica Nanoparticles by Direct Photopolymerization in Aqueous Media}, series = {Journal of polymer science : A, Polymer chemistry}, volume = {53}, journal = {Journal of polymer science : A, Polymer chemistry}, number = {10}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {0887-624X}, doi = {10.1002/pola.27593}, pages = {1260 -- 1267}, year = {2015}, abstract = {This article presents a simple and facile method to fabricate thermoresponsive polymer-grafted silica particles by direct surface-initiated photopolymerization of N-isopropylacrylamide (NIPAM). This method is based on silica particles bearing thiol functionalities, which are transformed into thiyl radicals by irradiation with UV light to initiate the polymerization of NIPAM in aqueous media at room temperature. The photopolymerization of NIPAM could be applied to smaller thiol-functionalized particles (approximate to 48 nm) as well as to larger particles (approximate to 692 nm). Hollow poly(NIPAM) capsules could be formed after etching away the silica cores from the composite particles. It is possible to produce tailor-made composite particles or capsules for particular applications by extending this approach to other vinyl monomers. (c) 2015 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 2015, 53, 1260-1267}, language = {en} } @article{KoshkinaWestmeierLangetal.2016, author = {Koshkina, Olga and Westmeier, Dana and Lang, Thomas and Bantz, Christoph and Hahlbrock, Angelina and W{\"u}rth, Christian and Resch-Genger, Ute and Braun, Ulrike and Thiermann, Raphael and Weise, Christoph and Eravci, Murat and Mohr, Benjamin and Schlaad, Helmut and Stauber, Roland H. and Docter, Dominic and Bertin, Annabelle and Maskos, Michael}, title = {Tuning the Surface of Nanoparticles: Impact of Poly(2-ethyl-2-oxazoline) on Protein Adsorption in Serum and Cellular Uptake}, series = {Macromolecular bioscience}, volume = {16}, journal = {Macromolecular bioscience}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1616-5187}, doi = {10.1002/mabi.201600074}, pages = {1287 -- 1300}, year = {2016}, abstract = {Due to the adsorption of biomolecules, the control of the biodistribution of nanoparticles is still one of the major challenges of nanomedicine. Poly(2-ethyl-2-oxazoline) (PEtOx) for surface modification of nanoparticles is applied and both protein adsorption and cellular uptake of PEtOxylated nanoparticles versus nanoparticles coated with poly(ethylene glycol) (PEG) and non-coated positively and negatively charged nanoparticles are compared. Therefore, fluorescent poly(organosiloxane) nanoparticles of 15 nm radius are synthesized, which are used as a scaffold for surface modification in a grafting onto approach. With multi-angle dynamic light scattering, asymmetrical flow field-flow fractionation, gel electrophoresis, and liquid chromatography-mass spectrometry, it is demonstrated that protein adsorption on PEtOxylated nanoparticles is extremely low, similar as on PEGylated nanoparticles. Moreover, quantitative microscopy reveals that PEtOxylation significantly reduces the non-specific cellular uptake, particularly by macrophage-like cells. Collectively, studies demonstrate that PEtOx is a very effective alternative to PEG for stealth modification of the surface of nanoparticles.}, language = {en} } @misc{LiebigSarhanPrietzeletal.2016, author = {Liebig, Ferenc and Sarhan, Radwan Mohamed and Prietzel, Claudia Christina and Reinecke, Antje and Koetz, Joachim}, title = {"Green" gold nanotriangles: synthesis, purification by polyelectrolyte/micelle depletion flocculation and performance in surface-enhanced Raman scattering}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-394430}, pages = {33561 -- 33568}, year = {2016}, abstract = {The aim of this study was to develop a one-step synthesis of gold nanotriangles (NTs) in the presence of mixed phospholipid vesicles followed by a separation process to isolate purified NTs. Negatively charged vesicles containing AOT and phospholipids, in the absence and presence of additional reducing agents (polyampholytes, polyanions or low molecular weight compounds), were used as a template phase to form anisotropic gold nanoparticles. Upon addition of the gold chloride solution, the nucleation process is initiated and both types of particles, i.e., isotropic spherical and anisotropic gold nanotriangles, are formed simultaneously. As it was not possible to produce monodisperse nanotriangles with such a one-step procedure, the anisotropic nanoparticles needed to be separated from the spherical ones. Therefore, a new type of separation procedure using combined polyelectrolyte/micelle depletion flocculation was successfully applied. As a result of the different purification steps, a green colored aqueous dispersion was obtained containing highly purified, well-defined negatively charged flat nanocrystals with a platelet thickness of 10 nm and an edge length of about 175 nm. The NTs produce promising results in surface-enhanced Raman scattering.}, language = {en} }