@article{ToulouseSchmuckerMeteschetal.2019, author = {Toulouse, Charlotte Marguerite and Schmucker, Sonja and Metesch, Kristina and Pfannstiel, Jens and Michel, Bernd and Starke, Ines and M{\"o}ller, Heiko Michael and Stefanski, Volker and Steuber, Julia}, title = {Mechanism and impact of catecholamine conversion by Vibrio cholerae}, series = {Biochimica et biophysica acta : Bioenergetics}, volume = {1860}, journal = {Biochimica et biophysica acta : Bioenergetics}, number = {6}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0005-2728}, doi = {10.1016/j.bbabio.2019.04.003}, pages = {478 -- 487}, year = {2019}, abstract = {Bacterial pathogens are influenced by signaling molecules including the catecholamines adrenaline and noradrenaline which are host-derived hormones and neurotransmitters. Adrenaline and noradrenaline modulate growth, motility and virulence of bacteria. We show that adrenaline is converted by the pathogen Vibrio cholerae to adrenochrome in the course of respiration, and demonstrate that superoxide produced by the respiratory, Na+ - translocating NADH:quinone oxidoreductase (NQR) acts as electron acceptor in the oxidative conversion of adrenaline to adrenochrome. Adrenochrome stimulates growth of V. cholerae, and triggers specific responses in V. cholerae and in immune cells. We performed a quantitative proteome analysis of V. cholerae grown in minimal medium with glucose as carbon source without catecholamines, or with adrenaline, noradrenaline or adrenochrome. Significant regulation of proteins participating in iron transport and iron homeostasis, in energy metabolism, and in signaling was observed upon exposure to adrenaline, noradrenaline or adrenochrome. On the host side, adrenochrome inhibited lipopolysaccharide-triggered formation of TNF-alpha by THP-1 monocytes, though to a lesser extent than adrenaline. It is proposed that adrenochrome produced from adrenaline by respiring V. cholerae functions as effector molecule in pathogen-host interaction.}, language = {en} }