@article{SanjurjoFerrrinTorrejonPostnovetal.2017, author = {Sanjurjo-Ferrrin, G. and Torrejon, J. M. and Postnov, K. and Oskinova, Lida and Rodes-Roca, J. J. and Bernabeu, Guillermo}, title = {XMM-Newton spectroscopy of the accreting magnetar candidate 4U0114+65}, series = {Astronomy and astrophysics : an international weekly journal}, volume = {606}, journal = {Astronomy and astrophysics : an international weekly journal}, publisher = {EDP Sciences}, address = {Les Ulis}, issn = {1432-0746}, doi = {10.1051/0004-6361/201630119}, pages = {4039 -- 4042}, year = {2017}, abstract = {Methods. We analysed the energy-resolved light curve and the time-resolved X-ray spectra provided by the EPIC cameras on board XMM-Newton. We also analysed the first high-resolution spectrum of this source provided by the Reflection Grating Spectrometer. Results. An X-ray pulse of 9350 +/- 160 s was measured. Comparison with previous measurements confirms the secular spin up of this source. We successfully fit the pulse-phase-resolved spectra with Comptonisation models. These models imply a very small (r similar to 3 km) and hot (kT similar to 2-3 keV) emitting region and therefore point to a hot spot over the neutron star (NS) surface as the most reliable explanation for the X-ray pulse. The long NS spin period, the spin-up rate, and persistent X-ray emission can be explained within the theory of quasi-spherical settling accretion, which may indicate that the magnetic field is in the magnetar range. Thus, 4U0114+65 could be a wind-accreting magnetar. We also observed two episodes of low luminosity. The first was only observed in the low-energy light curve and can be explained as an absorption by a large over-dense structure in the wind of the B1 supergiant donor. The second episode, which was deeper and affected all energies, may be due to temporal cessation of accretion onto one magnetic pole caused by non-spherical matter capture from the structured stellar wind. The light curve displays two types of dips that are clearly seen during the high-flux intervals. The short dips, with durations of tens of seconds, are produced through absorption by wind clumps. The long dips, in turn, seem to be associated with the rarefied interclump medium. From the analysis of the X-ray spectra, we found evidence of emission lines in the X-ray photoionised wind of the B1Ia donor. The Fe K alpha line was found to be highly variable and much weaker than in other X-ray binaries with supergiant donors. The degree of wind clumping, measured through the covering fraction, was found to be much lower than in supergiant donor stars with earlier spectral types. Conclusions. The XMM-Newton spectroscopy provided further support for the magnetar nature of the neutron star in 4U0114+65. The light curve presents dips that can be associated with clumps and the interclump medium in the stellar wind of the mass donor.}, language = {en} } @article{ToalaOskinovaGonzalezGalanetal.2016, author = {Toala, Jes{\´u}s Alberto and Oskinova, Lida and Gonzalez-Galan, Ana and Guerrero, Mart{\´i}n A. and Ignace, R. and Pohl, Martin}, title = {X-RAY OBSERVATIONS OF BOW SHOCKS AROUND RUNAWAY O STARS. THE CASE OF zeta OPH AND BD+43 degrees 3654}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, volume = {821}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {0004-637X}, doi = {10.3847/0004-637X/821/2/79}, pages = {9}, year = {2016}, abstract = {Non-thermal radiation has been predicted within bow shocks around runaway stars by recent theoretical works. We present X-ray observations toward the runaway stars zeta Oph by Chandra and Suzaku and of BD+43 degrees 3654 by XMM-Newton to search for the presence of non-thermal X-ray emission. We found no evidence of non-thermal emission spatially coincident with the bow shocks; nonetheless, diffuse emission was detected in the vicinity of zeta Oph. After a careful analysis of its spectral characteristics, we conclude that this emission has a thermal nature with a plasma temperature of T approximate to 2 x 10(6) K. The cometary shape of this emission seems to be in line with recent predictions of radiation-hydrodynamic models of runaway stars. The case of BD+43 degrees 3654 is puzzling, as non-thermal emission has been reported in a previous work for this source.}, language = {en} } @article{OskinovaHamannCassinellietal.2011, author = {Oskinova, Lida and Hamann, Wolf-Rainer and Cassinelli, Joseph P. and Brown, John C. and Todt, Helge Tobias}, title = {X-ray emission from massive stars with magnetic fields}, series = {Astronomische Nachrichten = Astronomical notes}, volume = {332}, journal = {Astronomische Nachrichten = Astronomical notes}, number = {9-10}, publisher = {Wiley-Blackwell}, address = {Malden}, issn = {0004-6337}, doi = {10.1002/asna.201111602}, pages = {988 -- 993}, year = {2011}, abstract = {We investigate the connections between the magnetic fields and the X-ray emission from massive stars. Our study shows that the X-ray properties of known strongly magnetic stars are diverse: while some comply to the predictions of the magnetically confined wind model, others do not. We conclude that strong, hard, and variable X-ray emission may be a sufficient attribute of magnetic massive stars, but it is not a necessary one. We address the general properties of X-ray emission from "normal" massive stars, especially the long standing mystery about the correlations between the parameters of X-ray emission and fundamental stellar properties. The recent development in stellar structure modeling shows that small-scale surface magnetic fields may be common. We suggest a "hybrid" scenario which could explain the X-ray emission from massive stars by a combination of magnetic mechanisms on the surface and shocks in the stellar wind. The magnetic mechanisms and the wind shocks are triggered by convective motions in sub-photospheric layers. This scenario opens the door for a natural explanation of the well established correlation between bolometric and X-ray luminosities.}, language = {en} } @article{MunozMoffatHilletal.2017, author = {Munoz, Melissa and Moffat, Anthony F. J. and Hill, Grant M. and Shenar, Tomer and Richardson, Noel D. and Pablo, Herbert and St-Louis, Nicole and Ramiaramanantsoa, Tahina}, title = {WR 148: identifying the companion of an extreme runaway massive binary}, series = {Monthly notices of the Royal Astronomical Society}, volume = {467}, journal = {Monthly notices of the Royal Astronomical Society}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0035-8711}, doi = {10.1093/mnras/stw2283}, pages = {3105 -- 3121}, year = {2017}, abstract = {WR 148 (HD 197406) is an extreme runaway system considered to be a potential candidate for a short-period (4.3173 d) rare WR + compact object binary. Provided with new high-resolution, high signal-to-noise spectra from the Keck observatory, we determine the orbital parameters for both the primary WR and the secondary, yielding respective projected orbital velocity amplitudes of 88.1 ± 3.8\&\#8201;km\&\#8201;s\&\#8722;1 and 79.2 ± 3.1\&\#8201;km\&\#8201;s\&\#8722;1 and implying a mass ratio of 1.1 ± 0.1. We then apply the shift-and-add technique to disentangle the spectra and obtain spectra compatible with a WN7ha and an O4-6 star. Considering an orbital inclination of \&\#8764;67°, derived from previous polarimetry observations, the system's total mass would be a mere 2-3M\&\#8857;\&\#8288;, an unprecedented result for a putative massive binary system. However, a system comprising a 37M\&\#8857; secondary (typical mass of an O5V star) and a 33M\&\#8857; primary (given the mass ratio) would infer an inclination of \&\#8764;18°. We therefore reconsider the previous methods of deriving the orbital inclination based on time-dependent polarimetry and photometry. While the polarimetric results are inconclusive requiring better data, the photometric results favour low inclinations. Finally, we compute WR 148's space velocity and retrace the runaway's trajectory back to the Galactic plane (GP). With an ejection velocity of 198 ± 27\&\#8201;km\&\#8201;s\&\#8722;1 and a travel time of 4.7 ± 0.8 Myr to reach its current location, WR 148 was most likely ejected via dynamical interactions in a young cluster.}, language = {en} } @article{HainichPasemannTodtetal.2015, author = {Hainich, Rainer and Pasemann, Diana and Todt, Helge Tobias and Shenar, Tomer and Sander, Andreas Alexander Christoph and Hamann, Wolf-Rainer}, title = {Wolf-Rayet stars in the Small Magellanic Cloud I. Analysis of the single WN stars}, series = {Astronomy and astrophysics : an international weekly journal}, volume = {581}, journal = {Astronomy and astrophysics : an international weekly journal}, publisher = {EDP Sciences}, address = {Les Ulis}, issn = {1432-0746}, doi = {10.1051/0004-6361/201526241}, pages = {30}, year = {2015}, abstract = {Context. Wolf-Rayet (WR) stars have a severe impact on their environments owing to their strong ionizing radiation fields and powerful stellar winds. Since these winds are considered to be driven by radiation pressure, it is theoretically expected that the degree of the wind mass-loss depends on the initial metallicity of WR stars. Aims. Following our comprehensive studies of WR stars in the Milky Way, M31, and the LMC, we derive stellar parameters and mass-loss rates for all seven putatively single WN stars known in the SMC. Based on these data, we discuss the impact of a low-metallicity environment on the mass loss and evolution of WR stars. Methods. The quantitative analysis of the WN stars is performed with the Potsdam Wolf-Rayet (PoWR) model atmosphere code. The physical properties of our program stars are obtained from fitting synthetic spectra to multi-band observations. Results. In all SMC WN stars, a considerable surface hydrogen abundance is detectable. The majority of these objects have stellar temperatures exceeding 75 kK, while their luminosities range from 10(5.5) to 10(6.1) L-circle dot. The WN stars in the SMC exhibit on average lower mass-loss rates and weaker winds than their counterparts in the Milky Way, M31, and the LMC. Conclusions. By comparing the mass-loss rates derived for WN stars in different Local Group galaxies, we conclude that a clear dependence of the wind mass-loss on the initial metallicity is evident, supporting the current paradigm that WR winds are driven by radiation. A metallicity effect on the evolution of massive stars is obvious from the HRD positions of the SMC WN stars at high temperatures and high luminosities. Standard evolution tracks are not able to reproduce these parameters and the observed surface hydrogen abundances. Homogeneous evolution might provide a better explanation for their evolutionary past.}, language = {en} } @article{KurfuerstFeldmeierKrticka2018, author = {Kurf{\"u}rst, P. and Feldmeier, Achim and Krticka, Jiri}, title = {Two-dimensional modeling of density and thermal structure of dense circumstellar outflowing disks}, series = {Astronomy and astrophysics : an international weekly journal}, volume = {613}, journal = {Astronomy and astrophysics : an international weekly journal}, publisher = {EDP Sciences}, address = {Les Ulis}, issn = {1432-0746}, doi = {10.1051/0004-6361/201731300}, pages = {24}, year = {2018}, abstract = {Context. Evolution of massive stars is affected by a significant loss of mass either via (nearly) spherically symmetric stellar winds or by aspherical mass-loss mechanisms, namely the outflowing equatorial disks. However, the scenario that leads to the formation of a disk or rings of gas and dust around massive stars is still under debate. It is also unclear how various forming physical mechanisms of the circumstellar environment affect its shape and density, as well as its kinematic and thermal structure. Results. Our models show the geometric distribution and contribution of viscous heating that begins to dominate in the central part of the disk for mass-loss rates higher than (M) over dot greater than or similar to 10(-10) M-circle dot yr(-1). In the models of dense viscous disks with (M) over dot > 10(-8) M-circle dot yr(-1), the viscosity increases the central temperature up to several tens of thousands of Kelvins, however the temperature rapidly drops with radius and with distance from the disk midplane. The high mass-loss rates and high viscosity lead to instabilities with significant waves or bumps in density and temperature in the very inner disk region. Conclusions. The two-dimensional radial-vertical models of dense outflowing disks including the full Navier-Stokes viscosity terms show very high temperatures that are however limited to only the central disk cores inside the optically thick area, while near the edge of the optically thick region the temperature may be low enough for the existence of neutral hydrogen, for example.}, language = {en} } @article{SurlanHamannKubatetal.2012, author = {Surlan, B. and Hamann, Wolf-Rainer and Kubat, Jirij and Oskinova, Lida and Feldmeier, Achim}, title = {Three-dimensional radiative transfer in clumped hot star winds I influence of clumping on the resonance line formation}, series = {Astronomy and astrophysics : an international weekly journal}, volume = {541}, journal = {Astronomy and astrophysics : an international weekly journal}, publisher = {EDP Sciences}, address = {Les Ulis}, issn = {0004-6361}, doi = {10.1051/0004-6361/201118590}, pages = {11}, year = {2012}, abstract = {Context. The true mass-loss rates from massive stars are important for many branches of astrophysics. For the correct modeling of the resonance lines, which are among the key diagnostics of stellar mass-loss, the stellar wind clumping has been found to be very important. To incorporate clumping into a radiative transfer calculation, three-dimensional (3D) models are required. Various properties of the clumps may have a strong impact on the resonance line formation and, therefore, on the determination of empirical mass-loss rates. Aims. We incorporate the 3D nature of the stellar wind clumping into radiative transfer calculations and investigate how different model parameters influence the resonance line formation. Methods. We develop a full 3D Monte Carlo radiative transfer code for inhomogeneous expanding stellar winds. The number density of clumps follows the mass conservation. For the first time, we use realistic 3D models that describe the dense as well as the tenuous wind components to model the formation of resonance lines in a clumped stellar wind. At the same time, we account for non-monotonic velocity fields. Results. The 3D density and velocity wind inhomogeneities show that there is a very strong impact on the resonance line formation. The different parameters describing the clumping and the velocity field results in different line strengths and profiles. We present a set of representative models for various sets of model parameters and investigate how the resonance lines are affected. Our 3D models show that the line opacity is lower for a larger clump separation and shallower velocity gradients within the clumps. Conclusions. Our model demonstrates that to obtain empirically correct mass-loss rates from the UV resonance lines, the wind clumping and its 3D nature must be taken into account.}, language = {en} } @article{IgnaceGayleyHamannetal.2013, author = {Ignace, Rico and Gayley, Kenneth G. and Hamann, Wolf-Rainer and Huenemoerder, David P. and Oskinova, Lida and Pollock, Andy M. T. and McFall, Michael}, title = {THE XMM-NEWTON/EPIC X-RAY LIGHT CURVE ANALYSIS OF WR 6}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, volume = {775}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, number = {1}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {0004-637X}, doi = {10.1088/0004-637X/775/1/29}, pages = {12}, year = {2013}, abstract = {We obtained four pointings of over 100 ks each of the well-studied Wolf-Rayet star WR 6 with the XMM-Newton satellite. With a first paper emphasizing the results of spectral analysis, this follow-up highlights the X-ray variability clearly detected in all four pointings. However, phased light curves fail to confirm obvious cyclic behavior on the well-established 3.766 day period widely found at longer wavelengths. The data are of such quality that we were able to conduct a search for event clustering in the arrival times of X-ray photons. However, we fail to detect any such clustering. One possibility is that X-rays are generated in a stationary shock structure. In this context we favor a corotating interaction region (CIR) and present a phenomenological model for X-rays from a CIR structure. We show that a CIR has the potential to account simultaneously for the X-ray variability and constraints provided by the spectral analysis. Ultimately, the viability of the CIR model will require both intermittent long-term X-ray monitoring of WR 6 and better physical models of CIR X-ray production at large radii in stellar winds.}, language = {en} } @article{HainichRuehlingTodtetal.2014, author = {Hainich, Rainer and Ruehling, Ute and Todt, Helge Tobias and Oskinova, Lida and Liermann, A. and Graefener, G. and Foellmi, C. and Schnurr, O. and Hamann, Wolf-Rainer}, title = {The Wolf-Rayet stars in the Large Magellanic Cloud - A comprehensive analysis of the WN class}, series = {Astronomy and astrophysics : an international weekly journal}, volume = {565}, journal = {Astronomy and astrophysics : an international weekly journal}, publisher = {EDP Sciences}, address = {Les Ulis}, issn = {0004-6361}, doi = {10.1051/0004-6361/201322696}, pages = {62}, year = {2014}, abstract = {Context. Massive stars, although being important building blocks of galaxies, are still not fully understood. This especially holds true for Wolf-Rayet (WR) stars with their strong mass loss, whose spectral analysis requires adequate model atmospheres. Aims. Following our comprehensive studies of the WR stars in the Milky Way, we now present spectroscopic analyses of almost all known WN stars in the LMC. Methods. For the quantitative analysis of the wind-dominated emission-line spectra, we employ the Potsdam Wolf-Rayet (PoWR) model atmosphere code. By fitting synthetic spectra to the observed spectral energy distribution and the available spectra (ultraviolet and optical), we obtain the physical properties of 107 stars. Results. We present the fundamental stellar and wind parameters for an almost complete sample of WN stars in the LMC. Among those stars that are putatively single, two different groups can be clearly distinguished. While 12\% of our sample are more luminous than 10(6) L-circle dot and contain a significant amount of hydrogen, 88\% of the WN stars, with little or no hydrogen, populate the luminosity range between log (L/L-circle dot) = 5.3 ... 5.8. Conclusions. While the few extremely luminous stars (log (L/L-circle dot) > 6), if indeed single stars, descended directly from the main sequence at very high initial masses, the bulk of WN stars have gone through the red-supergiant phase. According to their luminosities in the range of log (L/L-circle dot) = 5.3 ... 5.8, these stars originate from initial masses between 20 and 40 M-circle dot. This mass range is similar to the one found in the Galaxy, i.e. the expected metallicity dependence of the evolution is not seen. Current stellar evolution tracks, even when accounting for rotationally induced mixing, still partly fail to reproduce the observed ranges of luminosities and initial masses. Moreover, stellar radii are generally larger and effective temperatures correspondingly lower than predicted from stellar evolution models, probably due to subphotospheric inflation.}, language = {en} } @article{HamannGraefenerLiermannetal.2019, author = {Hamann, Wolf-Rainer and Gr{\"a}fener, G. and Liermann, A. and Hainich, Rainer and Sander, Andreas Alexander Christoph and Shenar, Tomer and Ramachandran, Varsha and Todt, Helge Tobias and Oskinova, Lida}, title = {The Galactic WN stars revisited}, series = {Astronomy and astrophysics : an international weekly journal}, volume = {625}, journal = {Astronomy and astrophysics : an international weekly journal}, publisher = {EDP Sciences}, address = {Les Ulis}, issn = {1432-0746}, doi = {10.1051/0004-6361/201834850}, pages = {11}, year = {2019}, abstract = {Comprehensive spectral analyses of the Galactic Wolf-Rayet stars of the nitrogen sequence (i.e. the WN subclass) have been performed in a previous paper. However, the distances of these objects were poorly known. Distances have a direct impact on the "absolute" parameters, such as luminosities and mass-loss rates. The recent Gaia Data Release (DR2) of trigonometric parallaxes includes nearly all WN stars of our Galactic sample. In the present paper, we apply the new distances to the previously analyzed Galactic WN stars and rescale the results accordingly. On this basis, we present a revised catalog of 55 Galactic WN stars with their stellar and wind parameters. The correlations between mass-loss rate and luminosity show a large scatter, for the hydrogen-free WN stars as well as for those with detectable hydrogen. The slopes of the log L - log M correlations are shallower than found previously. The empirical Hertzsprung-Russell diagram (HRD) still shows the previously established dichotomy between the hydrogen-free early WN subtypes that are located on the hot side of the zero-age main sequence (ZAMS), and the late WN subtypes, which show hydrogen and reside mostly at cooler temperatures than the ZAMS (with few exceptions). However, with the new distances, the distribution of stellar luminosities became more continuous than obtained previously. The hydrogen-showing stars of late WN subtype are still found to be typically more luminous than the hydrogen-free early subtypes, but there is a range of luminosities where both subclasses overlap. The empirical HRD of the Galactic single WN stars is compared with recent evolutionary tracks. Neither these single-star evolutionary models nor binary scenarios can provide a fully satisfactory explanation for the parameters of these objects and their location in the HRD.}, language = {en} } @article{SanderHamannTodt2012, author = {Sander, A. and Hamann, Wolf-Rainer and Todt, Helge Tobias}, title = {The Galactic WC stars Stellar parameters from spectral analyses indicate a new evolutionary sequence}, series = {Astronomy and astrophysics : an international weekly journal}, volume = {540}, journal = {Astronomy and astrophysics : an international weekly journal}, publisher = {EDP Sciences}, address = {Les Ulis}, issn = {0004-6361}, doi = {10.1051/0004-6361/201117830}, pages = {79}, year = {2012}, abstract = {Context. The life cycles of massive stars from the main sequence to their explosion as supernovae or gamma ray bursts are not yet fully clear, and the empirical results from spectral analyses are partly in conflict with current evolutionary models. The spectral analysis of Wolf-Rayet stars requires the detailed modeling of expanding stellar atmospheres in non-LTE. The Galactic WN stars have been comprehensively analyzed with such models of the latest stage of sophistication, while a similarly comprehensive study of the Galactic WC sample remains undone. Aims. We aim to establish the stellar parameters and mass-loss rates of the Galactic WC stars. These data provide the empirical basis of studies of (i) the role of WC stars in the evolution of massive stars, (ii) the wind-driving mechanisms, and (iii) the feedback of WC stars as input to models of the chemical and dynamical evolution of galaxies. Methods. We analyze the nearly complete sample of un-obscured Galactic WC stars, using optical spectra as well as ultraviolet spectra when available. The observations are fitted with theoretical spectra, using the Potsdam Wolf-Rayet (PoWR) model atmosphere code. A large grid of line-blanked models has been established for the range of WC subtypes WC4 - WC8, and smaller grids for the WC9 parameter domain. Both WO stars and WN/WC transit types are also analyzed using special models. Results. Stellar and atmospheric parameters are derived for more than 50 Galactic WC and two WO stars, covering almost the whole Galactic WC population as far as the stars are single, and un-obscured in the visual. In the Hertzsprung-Russell diagram, the WC stars reside between the hydrogen and the helium zero-age main sequences, having luminosities L from 10(4.9) to 10(5.6) L-circle dot. The mass-loss rates scale very tightly with L-0.8. The two WO stars in our sample turn out to be outstandingly hot (approximate to 200 kK) and do not fit into the WC scheme. Conclusions. By comparing the empirical WC positions in the Hertzsprung-Russell diagram with evolutionary models, and from recent supernova statistics, we conclude that WC stars have evolved from initial masses between 20 solar masses and 45 M-circle dot. In contrast to previous assumptions, it seems that WC stars in general do not descend from the most massive stars. Only the WO stars might stem from progenitors that have been initially more massive than 45 M-circle dot.}, language = {en} } @article{GrinbergHellElMellahetal.2017, author = {Grinberg, Victoria and Hell, Natalie and El Mellah, Ileyk and Neilsen, Joseph and Sander, Andreas Alexander Christoph and Leutenegger, Maurice and F{\"u}rst, Felix and Huenemoerder, David P. and Kretschmar, Peter and Kuehnel, Matthias and Martinez-Nunez, Silvia and Niu, Shu and Pottschmidt, Katja and Schulz, Norbert S. and Wilms, Joern and Nowak, Michael A.}, title = {The clumpy absorber in the high-mass X-ray binary Vela X-1}, series = {Astronomy and astrophysics : an international weekly journal}, volume = {608}, journal = {Astronomy and astrophysics : an international weekly journal}, publisher = {EDP Sciences}, address = {Les Ulis}, issn = {1432-0746}, doi = {10.1051/0004-6361/201731843}, pages = {18}, year = {2017}, abstract = {Bright and eclipsing, the high-mass X-ray binary Vela X-1 offers a unique opportunity to study accretion onto a neutron star from clumpy winds of O/B stars and to disentangle the complex accretion geometry of these systems. In Chandra-HETGS spectroscopy at orbital phase similar to 0.25, when our line of sight towards the source does not pass through the large-scale accretion structure such as the accretion wake, we observe changes in overall spectral shape on timescales of a few kiloseconds. This spectral variability is, at least in part, caused by changes in overall absorption and we show that such strongly variable absorption cannot be caused by unperturbed clumpy winds of O/B stars. We detect line features from high and low ionization species of silicon, magnesium, and neon whose strengths and presence depend on the overall level of absorption. These features imply a co-existence of cool and hot gas phases in the system, which we interpret as a highly variable, structured accretion flow close to the compact object such as has been recently seen in simulations of wind accretion in high-mass X-ray binaries.}, language = {en} } @article{RichardsonShenarRoyLoubieretal.2016, author = {Richardson, Noel D. and Shenar, Tomer and Roy-Loubier, Olivier and Schaefer, Gail and Moffat, Anthony F. J. and St-Louis, Nicole and Gies, Douglas R. and Farrington, Chris and Hill, Grant M. and Williams, Peredur M. and Gordon, Kathryn and Pablo, Herbert and Ramiaramanantsoa, Tahina}, title = {The CHARA Array resolves the long-period Wolf-Rayet binaries WR 137 and WR 138}, series = {Monthly notices of the Royal Astronomical Society}, volume = {461}, journal = {Monthly notices of the Royal Astronomical Society}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0035-8711}, doi = {10.1093/mnras/stw1585}, pages = {4115 -- 4124}, year = {2016}, abstract = {We report on interferometric observations with the CHARAArray of two classical Wolf-Rayet (WR) stars in suspected binary systems, namely WR 137 and WR 138. In both cases, we resolve the component stars to be separated by a few milliarcseconds. The data were collected in the H band, and provide a measure of the fractional flux for both stars in each system. We find that the WR star is the dominant H-band light source in both systems (fWR, 137 = 0.59 +/- 0.04; fWR, 138 = 0.67 +/- 0.01), which is confirmed through both comparisons with estimated fundamental parameters for WR stars and O dwarfs, as well as through spectral modelling of each system. Our spectral modelling also provides fundamental parameters for the stars and winds in these systems. The results on WR 138 provide evidence that it is a binary system which may have gone through a previous mass-transfer episode to create the WR star. The separation and position of the stars in the WR 137 system together with previous results from the IOTA interferometer provides evidence that the binary is seen nearly edgeon. The possible edge-on orbit of WR 137 aligns well with the dust production site imaged by the Hubble Space Telescope during a previous periastron passage, showing that the dust production may be concentrated in the orbital plane.}, language = {en} } @article{ToalaGuerreroTodtetal.2015, author = {Toala, Jes{\´u}s Alberto and Guerrero, Mart{\´i}n A. and Todt, Helge Tobias and Hamann, Wolf-Rainer and Chu, Y.-H. and Gruendl, R. A. and Sch{\"o}nberner, Detlef and Oskinova, Lida and Marquez-Lugo, R. A. and Fang, X. and Ramos-Larios, Gerardo}, title = {The born-again Planetary nebula A78: an X-RAY twin of A30}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, volume = {799}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, number = {1}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {0004-637X}, doi = {10.1088/0004-637X/799/1/67}, pages = {10}, year = {2015}, abstract = {We present the XMM-Newton discovery of X-ray emission from the planetary nebula (PN) A78, the second born-again PN detected in X-rays apart from A30. These two PNe share similar spectral and morphological characteristics: they harbor diffuse soft X-ray emission associated with the interaction between the H-poor ejecta and the current fast stellar wind and a point-like source at the position of the central star (CSPN). We present the spectral analysis of the CSPN, using for the first time an NLTE code for expanding atmospheres that takes line blanketing into account for the UV and optical spectra. The wind abundances are used for the X-ray spectral analysis of the CSPN and the diffuse emission. The X-ray emission from the CSPN in A78 can be modeled by a single C VI emission line, while the X-ray emission from its diffuse component is better described by an optically thin plasma emission model with a temperature of kT = 0.088 keV (T approximate to 1.0 x 10(6) K). We estimate X-ray luminosities in the 0.2-2.0 keV energy band of L-X,L-CSPN =(1.2 +/- 0.3) x 10(31) erg s(-1) and L-X,L-DIFF =(9.2 +/- 2.3) x 10(30) erg s(-1) for the CSPN and diffuse components, respectively.}, language = {en} } @article{RamachandranHamannHainichetal.2018, author = {Ramachandran, Varsha and Hamann, Wolf-Rainer and Hainich, Rainer and Oskinova, Lida and Shenar, Tomer and Sander, Andreas Alexander Christoph and Todt, Helge Tobias and Gallagher, John S.}, title = {Stellar population of the superbubble N206 in the LMC II. Parameters of the OB and WR stars, and the total massive star feedback}, series = {Astronomy and astrophysics : an international weekly journal}, volume = {615}, journal = {Astronomy and astrophysics : an international weekly journal}, publisher = {EDP Sciences}, address = {Les Ulis}, issn = {1432-0746}, doi = {10.1051/0004-6361/201832816}, pages = {72}, year = {2018}, abstract = {Context. Clusters or associations of early-type stars are often associated with a "superbubble" of hot gas. The formation of such superbubbles is caused by the feedback from massive stars. The complex N206 in the Large Magellanic Cloud (LMC) exhibits a superbubble and a rich massive star population. Aims. Our goal is to perform quantitative spectral analyses of all massive stars associated with the N206 superbubble in order to determine their stellar and wind parameters. We compare the superbubble energy budget to the stellar energy input and discuss the star formation history of the region. Results. We present the stellar and wind parameters of the OB stars and the two Wolf-Rayet (WR) binaries in the N206 complex. Twelve percent of the sample show Oe/Be type emission lines, although most of them appear to rotate far below critical. We found eight runaway stars based on their radial velocity. The wind-momentum luminosity relation of our OB sample is consistent with the expectations. The Hertzsprung-Russell diagram (HRD) of the OB stars reveals a large age spread (1-30 Myr), suggesting different episodes of star formation in the complex. The youngest stars are concentrated in the inner part of the complex, while the older OB stars are scattered over outer regions. We derived the present day mass function for the entire N206 complex as well as for the cluster NGC2018. The total ionizing photon flux produced by all massive stars in the N206 complex is Q(0) approximate to 5 x 10(50) s(-1), and the mechanical luminosity of their stellar winds amounts to L-mec = 1.7 x 10(38) erg s(-1). Three very massive Of stars are found to dominate the feedback among 164 OB stars in the sample. The two WR winds alone release about as much mechanical luminosity as the whole OB star sample. The cumulative mechanical feedback from all massive stellar winds is comparable to the combined mechanical energy of the supernova explosions that likely occurred in the complex. Accounting also for the WR wind and supernovae, the mechanical input over the last five Myr is approximate to 2.3 x 10(52) erg. Conclusions. The N206 complex in the LMC has undergone star formation episodes since more than 30 Myr ago. From the spectral analyses of its massive star population, we derive a current star formation rate of 2.2 x 10(-3) M-circle dot yr(-1). From the combined input of mechanical energy from all stellar winds, only a minor fraction is emitted in the form of X-rays. The corresponding input accumulated over a long time also exceeds the current energy content of the complex by more than a factor of five. The morphology of the complex suggests a leakage of hot gas from the superbubble.}, language = {en} } @article{RamachandranHainichHamannetal.2017, author = {Ramachandran, Varsha and Hainich, Rainer and Hamann, Wolf-Rainer and Oskinova, Lida and Shenar, T. and Sander, Andreas Alexander Christoph and Todt, Helge Tobias and Gallagher, John S.}, title = {Stellar population of the superbubble N206 in the LMC I. Analysis of the Of-type stars}, series = {Astronomy and astrophysics : an international weekly journal}, volume = {609}, journal = {Astronomy and astrophysics : an international weekly journal}, publisher = {EDP Sciences}, address = {Les Ulis}, issn = {1432-0746}, doi = {10.1051/0004-6361/201731093}, pages = {26}, year = {2017}, abstract = {Context. Massive stars severely influence their environment by their strong ionizing radiation and by the momentum and kinetic energy input provided by their stellar winds and supernovae. Quantitative analyses of massive stars are required to understand how their feedback creates and shapes large scale structures of the interstellar medium. The giant H II region N206 in the Large Magellanic Cloud contains an OB association that powers a superbubble filled with hot X-ray emitting gas, serving as an ideal laboratory in this context. Aims. We aim to estimate stellar and wind parameters of all OB stars in N206 by means of quantitative spectroscopic analyses. In this first paper, we focus on the nine Of-type stars located in this region. We determine their ionizing flux and wind mechanical energy. The analysis of nitrogen abundances in our sample probes rotational mixing. Methods. We obtained optical spectra with the multi-object spectrograph FLAMES at the ESO-VLT. When possible, the optical spectroscopy was complemented by UV spectra from the HST, IUE, and FUSE archives. Detailed spectral classifications are presented for our sample Of-type stars. For the quantitative spectroscopic analysis we used the Potsdam Wolf-Rayet model atmosphere code. We determined the physical parameters and nitrogen abundances of our sample stars by fitting synthetic spectra to the observations. Results. The stellar and wind parameters of nine Of-type stars, which are largely derived from spectral analysis are used to construct wind momentum luminosity relationship. We find that our sample follows a relation close to the theoretical prediction, assuming clumped winds. The most massive star in the N206 association is an Of supergiant that has a very high mass-loss rate. Two objects in our sample reveal composite spectra, showing that the Of primaries have companions of late O subtype. All stars in our sample have an evolutionary age of less than 4 million yr, with the O2-type star being the youngest. All these stars show a systematic discrepancy between evolutionary and spectroscopic masses. All stars in our sample are nitrogen enriched. Nitrogen enrichment shows a clear correlation with increasing projected rotational velocities. Conclusions. The mechanical energy input from the Of stars alone is comparable to the energy stored in the N206 superbubble as measured from the observed X-ray and H alpha emission.}, language = {en} } @article{RamosLariosToalaRodriguezGonzalezetal.2022, author = {Ramos-Larios, Gerardo and Toala, Jes{\´u}s Alberto and Rodriguez-Gonzalez, Janis B. and Guerrero, Martin A. and Gomez-Gonzalez, V{\´i}ctor Mauricio Alfonso}, title = {Rings and arcs around evolved stars - III. Physical conditions of the ring-like structures in the planetary nebula IC 4406 revealed by MUSE}, series = {Monthly notices of the Royal Astronomical Society}, volume = {513}, journal = {Monthly notices of the Royal Astronomical Society}, number = {2}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0035-8711}, pages = {2862 -- 2868}, year = {2022}, abstract = {We present the analysis of Very Large Telescope Multi Unit Spectroscopic Explorer (MUSE) observations of the planetary nebula (PN) IC 4406. MUSE images in key emission lines are used to unveil the presence of at least five ring-like structures north and south of the main nebula of IC4406. MUSE spectra are extracted from the rings to unambiguously assess for the first time in a PN their physical conditions, electron density (n(e)), and temperature (T-e). The rings are found to have similar T-e as the rim of the main nebula, but smaller n(e). Ratios between different ionic species suggest that the rings of IC4406 have a lower ionization state than the main cavity, in contrast to what was suggested for the rings in NGC 6543, the Cat's Eye Nebula.}, language = {en} } @article{GuerreroRuizHamannetal.2012, author = {Guerrero, Mart{\´i}n A. and Ruiz, N. and Hamann, Wolf-Rainer and Chu, Y.-H. and Todt, Helge Tobias and Sch{\"o}nberner, Detlef and Oskinova, Lida and Gr{\"u}ndl, R. A. and Steffen, M. and Blair, William P. and Toala, Jes{\´u}s Alberto}, title = {Rebirth of X-Ray emission from the born-again planetary Nebula A30}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, volume = {755}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, number = {2}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {0004-637X}, doi = {10.1088/0004-637X/755/2/129}, pages = {15}, year = {2012}, abstract = {The planetary nebula A30 is believed to have undergone a very late thermal pulse resulting in the ejection of knots of hydrogen-poor material. Using multi-epoch Hubble Space Telescope images, we have detected the angular expansion of these knots and derived an age of 850(-150)(+280) yr. To investigate the spectral and spatial properties of the soft X-ray emission detected by ROSAT, we have obtained Chandra and XMM-Newton deep observations of A30. The X-ray emission from A30 can be separated into two components: a point source at the central star and diffuse emission associated with the hydrogen-poor knots and the cloverleaf structure inside the nebular shell. To help us assess the role of the current stellar wind in powering this X-ray emission, we have determined the stellar parameters and wind properties of the central star of A30 using a non-LTE model fit to its optical and UV spectra. The spatial distribution and spectral properties of the diffuse X-ray emission are highly suggestive that it is generated by the post-born-again and present fast stellar winds interacting with the hydrogen-poor ejecta of the born-again event. This emission can be attributed to shock-heated plasma, as the hydrogen-poor knots are ablated by the stellar winds, under which circumstances the efficient mass loading of the present fast stellar wind raises its density and damps its velocity to produce the observed diffuse soft X-rays. Charge transfer reactions between the ions of the stellar winds and material of the born-again ejecta have also been considered as a possible mechanism for the production of diffuse X-ray emission, and upper limits on the expected X-ray production by this mechanism have been derived. The origin of the X-ray emission from the central star of A30 is puzzling: shocks in the present fast stellar wind and photospheric emission can be ruled out, while the development of a new, compact hot bubble confining the fast stellar wind seems implausible.}, language = {en} } @article{TodtSanderHainichetal.2015, author = {Todt, Helge Tobias and Sander, Angelika and Hainich, Rainer and Hamann, Wolf-Rainer and Quade, Markus and Shenar, Tomer}, title = {Potsdam Wolf-Rayet model atmosphere grids for WN stars}, series = {Astronomy and astrophysics : an international weekly journal}, volume = {579}, journal = {Astronomy and astrophysics : an international weekly journal}, publisher = {EDP Sciences}, address = {Les Ulis}, issn = {0004-6361}, doi = {10.1051/0004-6361/201526253}, pages = {6}, year = {2015}, abstract = {We present new grids of Potsdam Wolf-Rayet (PoWR) model atmospheres for Wolf-Rayet stars of the nitrogen sequence (WN stars). The models have been calculated with the latest version of the PoWR stellar atmosphere code for spherical stellar winds. The WN model atmospheres include the non-LTE solutions of the statistical equations for complex model atoms, as well as the radiative transfer equation in the co-moving frame. Iron-line blanketing is treated with the help of the superlevel approach, while wind inhomogeneities are taken into account via optically thin clumps. Three of our model grids are appropriate for Galactic metallicity. The hydrogen mass fraction of these grids is 50\%, 20\%, and 0\%, thus also covering the hydrogen-rich late-type WR stars that have been discovered in recent years. Three grids are adequate for LMC WN stars and have hydrogen fractions of 40\%, 20\%, and 0\%. Recently, additional grids with SMC metallicity and with 60\%, 40\%, 20\%, and 0\% hydrogen have been added. We provide contour plots of the equivalent widths of spectral lines that are usually used for classification and diagnostics.}, language = {en} } @article{SanchezAyasodelValleMartietal.2018, author = {Sanchez-Ayaso, Mar{\´i}a de la Estrella and del Valle, Maria Victoria and Marti, Josep and Romero, G. E. and Luque-Escamilla, Pedro Luis}, title = {Possible association of two Stellar Bowshocks with Unidentified Fermi Sources}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, volume = {861}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, number = {1}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {0004-637X}, doi = {10.3847/1538-4357/aac7c7}, pages = {9}, year = {2018}, abstract = {The bowshocks of runaway stars had been theoretically proposed as gamma-ray sources. However, this hypothesis has not been confirmed by observations to date. In this paper, we present two runaway stars (lambda Cep and LS 2355) whose bowshocks are coincident with the unidentified Fermi gamma-ray sources 3FLG J2210.1+5925 and 3FGL J1128.7-6232, respectively. After performing a cross-correlation between different catalogs at distinct wavelengths, we found that these bowshocks are the most peculiar objects in the Fermi position ellipses. Then we computed the inverse Compton emission and fitted the Fermi data in order to test the viability of both runaway stars as potential counterparts of the two high-energy sources. We obtained very reasonable values for the fitted parameters of both stars. We also evaluated the possibility for the source 3FGL J1128.7-6232, which is positionally coincident with a H II region, to be the result of background cosmic-ray protons interacting with the matter of the cloud, as well as the probability of a pure chance association. We conclude that the gamma rays from these Fermi sources might be produced in the bowshocks of the considered runaway stars. In such a case, these would be the first sources of this class ever detected at gamma rays.}, language = {en} }