@misc{StuetzWeberDolleetal.2016, author = {Stuetz, Wolfgang and Weber, Daniela and Doll{\´e}, Martijn E. T. and Jansen, Eug{\`e}ne and Grubeck-Loebenstein, Beatrix and Fiegl, Simone and Toussaint, Olivier and Bernhardt, Juergen and Gonos, Efstathios S. and Franceschi, Claudio and Sikora, Ewa and Moreno-Villanueva, Mar{\´i}a and Breusing, Nicolle and Grune, Tilman and B{\"u}rkle, Alexander}, title = {Plasma carotenoids, tocopherols, and retinol in the age-stratified (35-74 years) general population}, series = {Nutrients}, journal = {Nutrients}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-407659}, pages = {17}, year = {2016}, abstract = {Blood micronutrient status may change with age. We analyzed plasma carotenoids, α-/γ-tocopherol, and retinol and their associations with age, demographic characteristics, and dietary habits (assessed by a short food frequency questionnaire) in a cross-sectional study of 2118 women and men (age-stratified from 35 to 74 years) of the general population from six European countries. Higher age was associated with lower lycopene and α-/β-carotene and higher β-cryptoxanthin, lutein, zeaxanthin, α-/γ-tocopherol, and retinol levels. Significant correlations with age were observed for lycopene (r = -0.248), α-tocopherol (r = 0.208), α-carotene (r = -0.112), and β-cryptoxanthin (r = 0.125; all p < 0.001). Age was inversely associated with lycopene (-6.5\% per five-year age increase) and this association remained in the multiple regression model with the significant predictors (covariables) being country, season, cholesterol, gender, smoking status, body mass index (BMI (kg/m2)), and dietary habits. The positive association of α-tocopherol with age remained when all covariates including cholesterol and use of vitamin supplements were included (1.7\% vs. 2.4\% per five-year age increase). The association of higher β-cryptoxanthin with higher age was no longer statistically significant after adjustment for fruit consumption, whereas the inverse association of α-carotene with age remained in the fully adjusted multivariable model (-4.8\% vs. -3.8\% per five-year age increase). We conclude from our study that age is an independent predictor of plasma lycopene, α-tocopherol, and α-carotene.}, language = {en} } @misc{HenzeRailaKempfetal.2017, author = {Henze, Andrea and Raila, Jens and Kempf, Caroline and Reinke, Petra and Sefrin, Anett and Querfeld, Uwe and Schweigert, Florian J.}, title = {Vitamin A metabolism is changed in donors after living-kidney transplantation}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-400942}, pages = {7}, year = {2017}, abstract = {Background The kidneys are essential for the metabolism of vitamin A (retinol) and its transport proteins retinol-binding protein 4 (RBP4) and transthyretin. Little is known about changes in serum concentration after living donor kidney transplantation (LDKT) as a consequence of unilateral nephrectomy; although an association of these parameters with the risk of cardiovascular diseases and insulin resistance has been suggested. Therefore we analyzed the concentration of retinol, RBP4, apoRBP4 and transthyretin in serum of 20 living-kidney donors and respective recipients at baseline as well as 6 weeks and 6 months after LDKT. Results As a consequence of LDKT, the kidney function of recipients was improved while the kidney function of donors was moderately reduced within 6 weeks after LDKT. With regard to vitamin A metabolism, the recipients revealed higher levels of retinol, RBP4, transthyretin and apoRBP4 before LDKT in comparison to donors. After LDKT, the levels of all four parameters decreased in serum of the recipients, while retinol, RBP4 as well as apoRBP4 serum levels of donors increased and remained increased during the follow-up period of 6 months. Conclusion LDKT is generally regarded as beneficial for allograft recipients and not particularly detrimental for the donors. However, it could be demonstrated in this study that a moderate reduction of kidney function by unilateral nephrectomy, resulted in an imbalance of components of vitamin A metabolism with a significant increase of retinol and RBP4 and apoRBP4 concentration in serum of donors.}, language = {en} }