@misc{ZemellaThoringHoffmeisteretal.2018, author = {Zemella, Anne and Thoring, Lena and Hoffmeister, Christian and Šamal{\´i}kov{\´a}, M{\´a}ria and Ehren, Patricia and W{\"u}stenhagen, Doreen Anja and Kubick, Stefan}, title = {Cell-free protein synthesis as a novel tool for directed glycoengineering of active erythropoietin}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch Naturwissenschaftliche Reihe}, number = {824}, doi = {10.25932/publishup-42701}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-427017}, pages = {14}, year = {2018}, abstract = {As one of the most complex post-translational modification, glycosylation is widely involved in cell adhesion, cell proliferation and immune response. Nevertheless glycoproteins with an identical polypeptide backbone mostly differ in their glycosylation patterns. Due to this heterogeneity, the mapping of different glycosylation patterns to their associated function is nearly impossible. In the last years, glycoengineering tools including cell line engineering, chemoenzymatic remodeling and site-specific glycosylation have attracted increasing interest. The therapeutic hormone erythropoietin (EPO) has been investigated in particular by various groups to establish a production process resulting in a defined glycosylation pattern. However commercially available recombinant human EPO shows batch-to-batch variations in its glycoforms. Therefore we present an alternative method for the synthesis of active glycosylated EPO with an engineered O-glycosylation site by combining eukaryotic cell-free protein synthesis and site-directed incorporation of non-canonical amino acids with subsequent chemoselective modifications.}, language = {en} } @misc{Straubhaar2005, author = {Straubhaar, Thomas}, title = {Wachstum bleibt das Gebot der Stunde}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-47867}, year = {2005}, abstract = {The author agrees with Flassbeck that growth is important, particularly as a condition to solve existing structural problems of the labour market. Yet, in his opinion the central question is how to get higher growth rates. Straubhaar's answer is different from Flassbeck's: a 'no' to more public deficits, more regulations and more state activities; and, a 'yes' to more market, more flexibility, more mobility.}, language = {de} } @misc{Lenhard2012, author = {Lenhard, Michael}, title = {All's well that ends well}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {906}, issn = {1866-8372}, doi = {10.25932/publishup-43803}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-438035}, pages = {9 -- 11}, year = {2012}, abstract = {The transition from cell proliferation to cell expansion is critical for determining leaf size. Andriankaja et al. (2012) demonstrate that in leaves of dicotyledonous plants, a basal proliferation zone is maintained for several days before abruptly disappearing, and that chloroplast differentiation is required to trigger the onset of cell expansion.}, language = {en} } @misc{KessingKonrad2005, author = {Kessing, Sebastian G. and Konrad, Kai A.}, title = {Konjunkturpolitik kann Strukturreformen nicht ersetzen}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-47880}, year = {2005}, abstract = {The authors agree with Flassbeck's claim that growth generates employment. However, they do not agree with Flassbeck's conviction that growth is to be increased by demand management. In their comment, they explain why deficit spending and expansionary monetary policy are inappropriate substitutes for a sound structural policy.}, language = {de} } @misc{JohnsonRammKappeletal.2015, author = {Johnson, Kim L. and Ramm, Sascha and Kappel, Christian and Ward, Sally and Leyser, Ottoline and Sakamoto, Tomoaki and Kurata, Tetsuya and Bevan, Michael W. and Lenhard, Michael}, title = {The tinkerbell (tink) mutation identifies the dual-specificity MAPK phosphatase INDOLE- 3-BUTYRIC ACID-RESPONSE5 (IBR5) as a novel regulator of organ size in Arabidopsis}, series = {PLoS ONE}, journal = {PLoS ONE}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-410245}, pages = {17}, year = {2015}, abstract = {Mitogen-activated dual-specificity MAPK phosphatases are important negative regulators in the MAPK signalling pathways responsible for many essential processes in plants. In a screen for mutants with reduced organ size we have identified a mutation in the active site of the dual-specificity MAPK phosphatase INDOLE-3-BUTYRIC ACID-RESPONSE5 (IBR5) that we named tinkerbell (tink) due to its small size. Analysis of the tink mutant indicates that IBR5 acts as a novel regulator of organ size that changes the rate of growth in petals and leaves. Organ size and shape regulation by IBR5 acts independently of the KLU growth-regulatory pathway. Microarray analysis of tink/ibr5-6 mutants identified a likely role for this phosphatase in male gametophyte development. We show that IBR5 may influence the size and shape of petals through auxin and TCP growth regulatory pathways.}, language = {en} } @misc{IgualGilOstKaschetal.2019, author = {Igual Gil, Carla and Ost, Mario and Kasch, Juliane and Schumann, Sara and Heider, Sarah and Klaus, Susanne}, title = {Role of GDF15 in active lifestyle induced metabolic adaptations and acute exercise response in mice}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1090}, issn = {1866-8372}, doi = {10.25932/publishup-46054}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-460541}, pages = {11}, year = {2019}, abstract = {Physical activity is an important contributor to muscle adaptation and metabolic health. Growth differentiation factor 15 (GDF15) is established as cellular and nutritional stress-induced cytokine but its physiological role in response to active lifestyle or acute exercise is unknown. Here, we investigated the metabolic phenotype and circulating GDF15 levels in lean and obese male C57BI/6J mice with long-term voluntary wheel running (VWR) intervention. Additionally, treadmill running capacity and exercise-induced muscle gene expression was examined in GDF15-ablated mice. Active lifestyle mimic via VWR improved treadmill running performance and, in obese mice, also metabolic phenotype. The post-exercise induction of skeletal muscle transcriptional stress markers was reduced by VWR. Skeletal muscle GDF15 gene expression was very low and only transiently increased post-exercise in sedentary but not in active mice. Plasma GDF15 levels were only marginally affected by chronic or acute exercise. In obese mice, VWR reduced GDF15 gene expression in different tissues but did not reverse elevated plasma GDF15. Genetic ablation of GDF15 had no effect on exercise performance but augmented the post exercise expression of transcriptional exercise stress markers (Atf3, Atf6, and Xbp1s) in skeletal muscle. We conclude that skeletal muscle does not contribute to circulating GDF15 in mice, but muscle GDF15 might play a protective role in the exercise stress response.}, language = {en} } @misc{HornickBachCrawfurdetal.2017, author = {Hornick, Thomas and Bach, Lennart T. and Crawfurd, Katharine J. and Spilling, Kristian and Achterberg, Eric Pieter and Woodhouse, Jason Nicholas and Schulz, Kai Georg and Brussaard, Corina P. D. and Riebesell, Ulf and Grossart, Hans-Peter}, title = {Ocean acidification impacts bacteria-phytoplankton coupling at low-nutrient conditions}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {667}, issn = {1866-8372}, doi = {10.25932/publishup-41712}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-417126}, pages = {15}, year = {2017}, abstract = {The oceans absorb about a quarter of the annually produced anthropogenic atmospheric carbon dioxide (CO2), resulting in a decrease in surface water pH, a process termed ocean acidification (OA). Surprisingly little is known about how OA affects the physiology of heterotrophic bacteria or the coupling of heterotrophic bacteria to phytoplankton when nutrients are limited. Previous experiments were, for the most part, undertaken during productive phases or following nutrient additions designed to stimulate algal blooms. Therefore, we performed an in situ large-volume mesocosm (similar to 55 m(3)) experiment in the Baltic Sea by simulating different fugacities of CO2 (fCO(2)) extending from present to future conditions. The study was conducted in July-August after the nominal spring bloom, in order to maintain low-nutrient conditions throughout the experiment. This resulted in phytoplankton communities dominated by small-sized functional groups (picophytoplankton). There was no consistent fCO(2)-induced effect on bacterial protein production (BPP), cell-specific BPP (csBPP) or biovolumes (BVs) of either free-living (FL) or particle-associated (PA) heterotrophic bacteria, when considered as individual components (univariate analyses). Permutational Multivariate Analysis of Variance (PERMANOVA) revealed a significant effect of the fCO(2) treatment on entire assemblages of dissolved and particulate nutrients, metabolic parameters and the bacteria-phytoplankton community. However, distance-based linear modelling only identified fCO(2) as a factor explaining the variability observed amongst the microbial community composition, but not for explaining variability within the metabolic parameters. This suggests that fCO(2) impacts on microbial metabolic parameters occurred indirectly through varying physicochemical parameters and microbial species composition. Cluster analyses examining the co-occurrence of different functional groups of bacteria and phytoplankton further revealed a separation of the four fCO(2)-treated mesocosms from both control mesocosms, indicating that complex trophic interactions might be altered in a future acidified ocean. Possible consequences for nutrient cycling and carbon export are still largely unknown, in particular in a nutrient-limited ocean.}, language = {en} } @misc{HermanussenSchefflerGrothetal.2015, author = {Hermanussen, Michael and Scheffler, Christiane and Groth, Detlef and Aßmann, Christian}, title = {Height and skeletal morphology in relation to modern life style}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch Naturwissenschaftliche Reihe}, number = {869}, issn = {1866-8372}, doi = {10.25932/publishup-43481}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-434814}, pages = {7}, year = {2015}, abstract = {Height and skeletal morphology strongly relate to life style. Parallel to the decrease in physical activity and locomotion, modern people are slimmer in skeletal proportions. In German children and adolescents, elbow breadth and particularly relative pelvic breadth (50th centile of bicristal distance divided by body height) have significantly decreased in recent years. Even more evident than the changes in pelvic morphology are the rapid changes in body height in most modern countries since the end-19th and particularly since the mid-20th century. Modern Japanese mature earlier; the age at take-off (ATO, the age at which the adolescent growth spurt starts) decreases, and they are taller at all ages. Preece-Baines modelling of six national samples of Japanese children and adolescents, surveyed between 1955 and 2000, shows that this gain in height is largely an adolescent trend, whereas height at take-off (HTO) increased by less than 3 cm since 1955; adolescent growth (height gain between ATO and adult age) increased by 6 cm. The effect of globalization on the modern post-war Japanese society ("community effect in height") on adolescent growth is discussed.}, language = {en} } @misc{Flassbeck2005, author = {Flassbeck, Heiner}, title = {Arbeitspl{\"a}tze durch Wachstum : anders geht es nicht}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-9756}, year = {2005}, abstract = {The author argues that growth determines employment and not the other way around. He opposes the widespread view among German economists that more employment generated by wage cuts or increased labour market flexibility will stimulate growth. For him, this view relies on theoretical prejudices that have to be rejected in light of some recent, simple evidence. The fact that all cyclical rebounds during the 1990s have been cut short by restrictive monetary policy explains the inability of the German labour market to regain full employment.}, language = {de} }