@misc{WochatzSchraplauEngeletal.2022, author = {Wochatz, Monique and Schraplau, Anne and Engel, Tilman and Zecher, Mahli Megan and Sharon, Hadar and Alt, Yasmin and Mayer, Frank and Kalron, Alon}, title = {Application of eccentric training in various clinical populations}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, number = {833}, issn = {1866-8364}, doi = {10.25932/publishup-58849}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-588493}, pages = {15}, year = {2022}, abstract = {Physical activity and exercise are effective approaches in prevention and therapy of multiple diseases. Although the specific characteristics of lengthening contractions have the potential to be beneficial in many clinical conditions, eccentric training is not commonly used in clinical populations with metabolic, orthopaedic, or neurologic conditions. The purpose of this pilot study is to investigate the feasibility, functional benefits, and systemic responses of an eccentric exercise program focused on the trunk and lower extremities in people with low back pain (LBP) and multiple sclerosis (MS). A six-week eccentric training program with three weekly sessions is performed by people with LBP and MS. The program consists of ten exercises addressing strength of the trunk and lower extremities. The study follows a four-group design (N = 12 per group) in two study centers (Israel and Germany): three groups perform the eccentric training program: A) control group (healthy, asymptomatic); B) people with LBP; C) people with MS; group D (people with MS) receives standard care physiotherapy. Baseline measurements are conducted before first training, post-measurement takes place after the last session both comprise blood sampling, self-reported questionnaires, mobility, balance, and strength testing. The feasibility of the eccentric training program will be evaluated using quantitative and qualitative measures related to the study process, compliance and adherence, safety, and overall program assessment. For preliminary assessment of potential intervention effects, surrogate parameters related to mobility, postural control, muscle strength and systemic effects are assessed. The presented study will add knowledge regarding safety, feasibility, and initial effects of eccentric training in people with orthopaedic and neurological conditions. The simple exercises, that are easily modifiable in complexity and intensity, are likely beneficial to other populations. Thus, multiple applications and implementation pathways for the herein presented training program are conceivable.}, language = {en} } @misc{WippertPuschmannDriessleinetal.2020, author = {Wippert, Pia-Maria and Puschmann, Anne-Katrin and Drießlein, David and Banzer, Winfried and Beck, Heidrun and Schiltenwolf, Marcus and Schneider, Christian and Mayer, Frank}, title = {Personalized treatment suggestions}, series = {Postprints der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, number = {690}, issn = {1866-8364}, doi = {10.25932/publishup-47199}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-471993}, pages = {13}, year = {2020}, abstract = {Background: The back pain screening tool Risk-Prevention-Index Social (RPI-S) identifies the individual psychosocial risk for low back pain chronification and supports the allocation of patients at risk in additional multidisciplinary treatments. The study objectives were to evaluate (1) the prognostic validity of the RPI-S for a 6-month time frame and (2) the clinical benefit of the RPI-S. Methods: In a multicenter single-blind 3-armed randomized controlled trial, n = 660 persons (age 18-65 years) were randomly assigned to a twelve-week uni- or multidisciplinary exercise intervention or control group. Psychosocial risk was assessed by the RPI-S domain social environment (RPI-SSE) and the outcome pain by the Chronic Pain Grade Questionnaire (baseline M1, 12-weeks M4, 24-weeks M5). Prognostic validity was quantified by the root mean squared error (RMSE) within the control group. The clinical benefit of RPI-SSE was calculated by repeated measures ANOVA in intervention groups. Results: A subsample of n = 274 participants (mean = 38.0 years, SD 13.1) was analyzed, of which 30\% were classified at risk in their psychosocial profile. The half-year prognostic validity was good (RMSE for disability of 9.04 at M4 and of 9.73 at M5; RMSE for pain intensity of 12.45 at M4 and of 14.49 at M5). People at risk showed significantly stronger reduction in pain disability and intensity at M4/M5, if participating in a multidisciplinary exercise treatment. Subjects at no risk showed a smaller reduction in pain disability in both interventions and no group differences for pain intensity. Regarding disability due to pain, around 41\% of the sample would gain an unfitted treatment without the back pain screening. Conclusion: The RPI-SSE prognostic validity demonstrated good applicability and a clinical benefit confirmed by a clear advantage of an individualized treatment possibility.}, language = {en} } @misc{WippertPuschmannDriessleinetal.2017, author = {Wippert, Pia-Maria and Puschmann, Anne-Katrin and Drießlein, David and Arampatzis, Adamantios and Banzer, Winfried and Beck, Heidrun and Schiltenwolf, Marcus and Schmidt, Hendrik and Schneider, Christian and Mayer, Frank}, title = {Development of a risk stratification and prevention index for stratified care in chronic low back pain. Focus: yellow flags (MiSpEx network)}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-403424}, pages = {11}, year = {2017}, abstract = {Introduction: Chronic low back pain (LBP) is a major cause of disability; early diagnosis and stratification of care remain challenges. Objectives: This article describes the development of a screening tool for the 1-year prognosis of patients with high chronic LBP risk (risk stratification index) and for treatment allocation according to treatment-modifiable yellow flag indicators (risk prevention indices, RPI-S). Methods: Screening tools were derived from a multicentre longitudinal study (n = 1071, age >18, intermittent LBP). The greatest prognostic predictors of 4 flag domains ("pain," "distress," "social-environment," "medical care-environment") were determined using least absolute shrinkage and selection operator regression analysis. Internal validity and prognosis error were evaluated after 1-year follow-up. Receiver operating characteristic curves for discrimination (area under the curve) and cutoff values were determined. Results: The risk stratification index identified persons with increased risk of chronic LBP and accurately estimated expected pain intensity and disability on the Pain Grade Questionnaire (0-100 points) up to 1 year later with an average prognosis error of 15 points. In addition, 3-risk classes were discerned with an accuracy of area under the curve = 0.74 (95\% confidence interval 0.63-0.85). The RPI-S also distinguished persons with potentially modifiable prognostic indicators from 4 flag domains and stratified allocation to biopsychosocial treatments accordingly. Conclusion: The screening tools, developed in compliance with the PROGRESS and TRIPOD statements, revealed good validation and prognostic strength. These tools improve on existing screening tools because of their utility for secondary preventions, incorporation of exercise effect modifiers, exact pain estimations, and personalized allocation to multimodal treatments.}, language = {en} } @misc{WippertPuschmannArampatzisetal.2018, author = {Wippert, Pia-Maria and Puschmann, Anne-Katrin and Arampatzis, Adamantios and Schiltenwolf, Marcus and Mayer, Frank}, title = {Diagnosis of psychosocial risk factors in prevention of low back pain in athletes (MiSpEx)}, issn = {1866-8364}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-407391}, year = {2018}, abstract = {Background Low back pain (LBP) is a common pain syndrome in athletes, responsible for 28\% of missed training days/year. Psychosocial factors contribute to chronic pain development. This study aims to investigate the transferability of psychosocial screening tools developed in the general population to athletes and to define athlete-specific thresholds. Methods Data from a prospective multicentre study on LBP were collected at baseline and 1-year follow-up (n=52 athletes, n=289 recreational athletes and n=246 non-athletes). Pain was assessed using the Chronic Pain Grade questionnaire. The psychosocial Risk Stratification Index (RSI) was used to obtain prognostic information regarding the risk of chronic LBP (CLBP). Individual psychosocial risk profile was gained with the Risk Prevention Index - Social (RPI-S). Differences between groups were calculated using general linear models and planned contrasts. Discrimination thresholds for athletes were defined with receiver operating characteristics (ROC) curves. Results Athletes and recreational athletes showed significantly lower psychosocial risk profiles and prognostic risk for CLBP than non-athletes. ROC curves suggested discrimination thresholds for athletes were different compared with non-athletes. Both screenings demonstrated very good sensitivity (RSI=100\%; RPI-S: 75\%-100\%) and specificity (RSI: 76\%-93\%; RPI-S: 71\%-93\%). RSI revealed two risk classes for pain intensity (area under the curve (AUC) 0.92(95\% CI 0.85 to 1.0)) and pain disability (AUC 0.88(95\% CI 0.71 to 1.0)). Conclusions Both screening tools can be used for athletes. Athlete-specific thresholds will improve physicians' decision making and allow stratified treatment and prevention.}, language = {en} } @misc{WippertNiedererDriessleinetal.2021, author = {Wippert, Pia-Maria and Niederer, Daniel and Drießlein, David and Beck, Heidrun and Banzer, Winfried Eberhard and Schneider, Christian and Schiltenwolf, Marcus and Mayer, Frank}, title = {Psychosocial Moderators and Mediators of Sensorimotor Exercise in Low Back Pain: A Randomized Multicenter Controlled Trial}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, issn = {1866-8364}, doi = {10.25932/publishup-54327}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-543277}, pages = {1 -- 16}, year = {2021}, abstract = {The effects of exercise interventions on unspecific chronic low back pain (CLBP) have been investigated in many studies, but the results are inconclusive regarding exercise types, efficiency, and sustainability. This may be because the influence of psychosocial factors on exercise induced adaptation regarding CLBP is neglected. Therefore, this study assessed psychosocial characteristics, which moderate and mediate the effects of sensorimotor exercise on LBP. A single-blind 3-arm multicenter randomized controlled trial was conducted for 12-weeks. Three exercise groups, sensorimotor exercise (SMT), sensorimotor and behavioral training (SMT-BT), and regular routines (CG) were randomly assigned to 662 volunteers. Primary outcomes (pain intensity and disability) and psychosocial characteristics were assessed at baseline (M1) and follow-up (3/6/12/24 weeks, M2-M5). Multiple regression models were used to analyze whether psychosocial characteristics are moderators of the relationship between exercise and pain, meaning that psychosocial factors and exercise interact. Causal mediation analysis were conducted to analyze, whether psychosocial characteristics mediate the exercise effect on pain. A total of 453 participants with intermittent pain (mean age = 39.5 ± 12.2 years, f = 62\%) completed the training. It was shown, that depressive symptomatology (at M4, M5), vital exhaustion (at M4), and perceived social support (at M5) are significant moderators of the relationship between exercise and the reduction of pain intensity. Further depressive mood (at M4), social-satisfaction (at M4), and anxiety (at M5 SMT) significantly moderate the exercise effect on pain disability. The amount of moderation was of clinical relevance. In contrast, there were no psychosocial variables which mediated exercise effects on pain. In conclusion it was shown, that psychosocial variables can be moderators in the relationship between sensorimotor exercise induced adaptation on CLBP which may explain conflicting results in the past regarding the merit of exercise interventions in CLBP. Results suggest further an early identification of psychosocial risk factors by diagnostic tools, which may essential support the planning of personalized exercise therapy. Level of Evidence: Level I. Clinical Trial Registration: DRKS00004977, LOE: I, MiSpEx: grant-number: 080102A/11-14. https://www.drks.de/drks_web/navigate.do?navigationId=trial.HTML\&TRIAL_ID=DRKS00004977.}, language = {en} } @misc{WahmkowCasselMayeretal.2017, author = {Wahmkow, Gunnar and Cassel, Michael and Mayer, Frank and Baur, Heiner}, title = {Effects of different medial arch support heights on rearfoot kinematics}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-402934}, pages = {11}, year = {2017}, abstract = {Background Foot orthoses are usually assumed to be effective by optimizing mechanically dynamic rearfoot configuration. However, the effect from a foot orthosis on kinematics that has been demonstrated scientifically has only been marginal. The aim of this study was to examine the effect of different heights in medial arch-supported foot orthoses on rear foot motion during gait. Methods Nineteen asymptomatic runners (36±11years, 180±5cm, 79±10kg; 41±22km/week) participated in the study. Trials were recorded at 3.1 mph (5 km/h) on a treadmill. Athletes walked barefoot and with 4 different not customized medial arch-supported foot orthoses of various arch heights (N:0 mm, M:30 mm, H:35 mm, E:40mm). Six infrared cameras and the `Oxford Foot Model´ were used to capture motion. The average stride in each condition was calculated from 50 gait cycles per condition. Eversion excursion and internal tibia rotation were analyzed. Descriptive statistics included calculating the mean ± SD and 95\% CIs. Group differences by condition were analyzed by one factor (foot orthoses) repeated measures ANOVA (α = 0.05). Results Eversion excursion revealed the lowest values for N and highest for H (B:4.6°±2.2°; 95\% CI [3.1;6.2]/N:4.0°±1.7°; [2.9;5.2]/M:5.2°±2.6°; [3.6;6.8]/H:6.2°±3.3°; [4.0;8.5]/E:5.1°±3.5°; [2.8;7.5]) (p>0.05). Range of internal tibia rotation was lowest with orthosis H and highest with E (B:13.3°±3.2°; 95\% CI [11.0;15.6]/N:14.5°±7.2°; [9.2;19.6]/M:13.8°±5.0°; [10.8;16.8]/H:12.3°±4.3°; [9.0;15.6]/E:14.9°±5.0°; [11.5;18.3]) (p>0.05). Differences between conditions were small and the intrasubject variation high. Conclusion Our results indicate that different arch support heights have no systematic effect on eversion excursion or the range of internal tibia rotation and therefore might not exert a crucial influence on rear foot alignment during gait.}, language = {en} } @misc{SchraplauBlockHaeusleretal.2021, author = {Schraplau, Anne and Block, Andrea and H{\"a}usler, Andreas and Wippert, Pia-Maria and Rapp, Michael Armin and V{\"o}ller, Heinz and Bonaventura, Klaus and Mayer, Frank}, title = {Mobile diagnostics and consultation for the prevention of the metabolic syndrome and its secondary diseases in Brandenburg—study protocol of a regional prospective cohort study: the Mobile Brandenburg Cohort}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, issn = {1866-8364}, doi = {10.25932/publishup-54950}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-549506}, pages = {1 -- 11}, year = {2021}, abstract = {Background The metabolic syndrome (MetS) is a risk cluster for a number of secondary diseases. The implementation of prevention programs requires early detection of individuals at risk. However, access to health care providers is limited in structurally weak regions. Brandenburg, a rural federal state in Germany, has an especially high MetS prevalence and disease burden. This study aims to validate and test the feasibility of a setup for mobile diagnostics of MetS and its secondary diseases, to evaluate the MetS prevalence and its association with moderating factors in Brandenburg and to identify new ways of early prevention, while establishing a "Mobile Brandenburg Cohort" to reveal new causes and risk factors for MetS. Methods In a pilot study, setups for mobile diagnostics of MetS and secondary diseases will be developed and validated. A van will be equipped as an examination room using point-of-care blood analyzers and by mobilizing standard methods. In study part A, these mobile diagnostic units will be placed at different locations in Brandenburg to locally recruit 5000 participants aged 40-70 years. They will be examined for MetS and advice on nutrition and physical activity will be provided. Questionnaires will be used to evaluate sociodemographics, stress perception, and physical activity. In study part B, participants with MetS, but without known secondary diseases, will receive a detailed mobile medical examination, including MetS diagnostics, medical history, clinical examinations, and instrumental diagnostics for internal, cardiovascular, musculoskeletal, and cognitive disorders. Participants will receive advice on nutrition and an exercise program will be demonstrated on site. People unable to participate in these mobile examinations will be interviewed by telephone. If necessary, participants will be referred to general practitioners for further diagnosis. Discussion The mobile diagnostics approach enables early detection of individuals at risk, and their targeted referral to local health care providers. Evaluation of the MetS prevalence, its relation to risk-increasing factors, and the "Mobile Brandenburg Cohort" create a unique database for further longitudinal studies on the implementation of home-based prevention programs to reduce mortality, especially in rural regions. Trial registration German Clinical Trials Register, DRKS00022764; registered 07 October 2020—retrospectively registered.}, language = {en} } @misc{RischStollSchomoelleretal.2021, author = {Risch, Lucie and Stoll, Josefine and Schom{\"o}ller, Anne and Engel, Tilman and Mayer, Frank and Cassel, Michael}, title = {Intraindividual Doppler Flow Response to Exercise Differs Between Symptomatic and Asymptomatic Achilles Tendons}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, issn = {1866-8364}, doi = {10.25932/publishup-54286}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-542865}, pages = {1 -- 8}, year = {2021}, abstract = {Objective: This study investigated intraindividual differences of intratendinous blood flow (IBF) in response to running exercise in participants with Achilles tendinopathy. Design: This is a cross-sectional study. Setting: The study was conducted at the University Outpatient Clinic. Participants: Sonographic detectable intratendinous blood flow was examined in symptomatic and contralateral asymptomatic Achilles tendons of 19 participants (42 ± 13 years, 178 ± 10 cm, 76 ± 12 kg, VISA-A 75 ± 16) with clinically diagnosed unilateral Achilles tendinopathy and sonographic evident tendinosis. Intervention: IBF was assessed using Doppler ultrasound "Advanced Dynamic Flow" before (Upre) and 5, 30, 60, and 120 min (U5-U120) after a standardized submaximal constant load run. Main Outcome Measure: IBF was quantified by counting the number (n) of vessels in each tendon. Results: At Upre, IBF was higher in symptomatic compared with asymptomatic tendons [mean 6.3 (95\% CI: 2.8-9.9) and 1.7 (0.4-2.9), p < 0.01]. Overall, 63\% of symptomatic and 47\% of asymptomatic Achilles tendons responded to exercise, whereas 16 and 11\% showed persisting IBF and 21 and 42\% remained avascular throughout the investigation. At U5, IBF increased in both symptomatic and asymptomatic tendons [difference to baseline: 2.4 (0.3-4.5) and 0.9 (0.5-1.4), p = 0.05]. At U30 to U120, IBF was still increased in symptomatic but not in asymptomatic tendons [mean difference to baseline: 1.9 (0.8-2.9) and 0.1 (-0.9 to 1.2), p < 0.01]. Conclusion: Irrespective of pathology, 47-63\% of Achilles tendons responded to exercise with an immediate acute physiological IBF increase by an average of one to two vessels ("responders"). A higher amount of baseline IBF (approximately five vessels) and a prolonged exercise-induced IBF response found in symptomatic ATs indicate a pain-associated altered intratendinous "neovascularization."}, language = {en} } @misc{RischMayerCassel2021, author = {Risch, Lucie and Mayer, Frank and Cassel, Michael}, title = {Doppler flow response following running exercise differs between healthy and tendinopathic Achilles tendons}, series = {Postprints der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, issn = {1866-8364}, doi = {10.25932/publishup-52136}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-521367}, pages = {12}, year = {2021}, abstract = {Background: The relationship between exercise-induced intratendinous blood flow (IBF) and tendon pathology or training exposure is unclear. Objective: This study investigates the acute effect of running exercise on sonographic detectable IBF in healthy and tendinopathic Achilles tendons (ATs) of runners and recreational participants. Methods: 48 participants (43 ± 13 years, 176 ± 9 cm, 75 ± 11 kg) performed a standardized submaximal 30-min constant load treadmill run with Doppler ultrasound "Advanced dynamic flow" examinations before (Upre) and 5, 30, 60, and 120 min (U5-U120) afterward. Included were runners (>30 km/week) and recreational participants (<10 km/week) with healthy (Hrun, n = 10; Hrec, n = 15) or tendinopathic (Trun, n = 13; Trec, n = 10) ATs. IBF was assessed by counting number [n] of intratendinous vessels. IBF data are presented descriptively (\%, median [minimum to maximum range] for baseline-IBF and IBF-difference post-exercise). Statistical differences for group and time point IBF and IBF changes were analyzed with Friedman and Kruskal-Wallis ANOVA (α = 0.05). Results: At baseline, IBF was detected in 40\% (3 [1-6]) of Hrun, in 53\% (4 [1-5]) of Hrec, in 85\% (3 [1-25]) of Trun, and 70\% (10 [2-30]) of Trec. At U5 IBF responded to exercise in 30\% (3 [-1-9]) of Hrun, in 53\% (4 [-2-6]) of Hrec, in 70\% (4 [-10-10]) of Trun, and in 80\% (5 [1-10]) of Trec. While IBF in 80\% of healthy responding ATs returned to baseline at U30, IBF remained elevated until U120 in 60\% of tendinopathic ATs. Within groups, IBF changes from Upre-U120 were significant for Hrec (p < 0.01), Trun (p = 0.05), and Trec (p < 0.01). Between groups, IBF changes in consecutive examinations were not significantly different (p > 0.05) but IBF-level was significantly higher at all measurement time points in tendinopathic versus healthy ATs (p < 0.05). Conclusion: Irrespective of training status and tendon pathology, running leads to an immediate increase of IBF in responding tendons. This increase occurs shortly in healthy and prolonged in tendinopathic ATs. Training exposure does not alter IBF occurrence, but IBF level is elevated in tendon pathology. While an immediate exercise-induced IBF increase is a physiological response, prolonged IBF is considered a pathological finding associated with Achilles tendinopathy.}, language = {en} } @misc{PuschmannDriessleinBecketal.2020, author = {Puschmann, Anne-Katrin and Drießlein, David and Beck, Heidrun and Arampatzis, Adamantios and Moreno Catal{\´a}, Maria and Schiltenwolf, Marcus and Mayer, Frank and Wippert, Pia-Maria}, title = {Stress and Self-Efficacy as Long-Term Predictors for Chronic Low Back Pain}, series = {Postprints der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, issn = {1866-8364}, doi = {10.25932/publishup-46013}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-460134}, pages = {613 -- 621}, year = {2020}, abstract = {Purpose: Psychosocial variables are known risk factors for the development and chronification of low back pain (LBP). Psychosocial stress is one of these risk factors. Therefore, this study aims to identify the most important types of stress predicting LBP. Self-efficacy was included as a potential protective factor related to both, stress and pain. Participants and Methods: This prospective observational study assessed n = 1071 subjects with low back pain over 2 years. Psychosocial stress was evaluated in a broad manner using instruments assessing perceived stress, stress experiences in work and social contexts, vital exhaustion and life-event stress. Further, self-efficacy and pain (characteristic pain intensity and disability) were assessed. Using least absolute shrinkage selection operator regression, important predictors of characteristic pain intensity and pain-related disability at 1-year and 2-years follow-up were analyzed. Results: The final sample for the statistic procedure consisted of 588 subjects (age: 39.2 (± 13.4) years; baseline pain intensity: 27.8 (± 18.4); disability: 14.3 (± 17.9)). In the 1-year follow-up, the stress types "tendency to worry", "social isolation", "work discontent" as well as vital exhaustion and negative life events were identified as risk factors for both pain intensity and pain-related disability. Within the 2-years follow-up, Lasso models identified the stress types "tendency to worry", "social isolation", "social conflicts", and "perceived long-term stress" as potential risk factors for both pain intensity and disability. Furthermore, "self-efficacy" ("internality", "self-concept") and "social externality" play a role in reducing pain-related disability. Conclusion: Stress experiences in social and work-related contexts were identified as important risk factors for LBP 1 or 2 years in the future, even in subjects with low initial pain levels. Self-efficacy turned out to be a protective factor for pain development, especially in the long-term follow-up. Results suggest a differentiation of stress types in addressing psychosocial factors in research, prevention and therapy approaches.}, language = {en} } @misc{PlummerMugeleSteffenetal.2019, author = {Plummer, Ashley and Mugele, Hendrik and Steffen, Kathrin and Stoll, Josefine and Mayer, Frank and M{\"u}ller, Juliane}, title = {General versus sports-specific injury prevention programs in athletes}, series = {Postprints der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, number = {591}, issn = {1866-8364}, doi = {10.25932/publishup-44113}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-441131}, pages = {17}, year = {2019}, abstract = {Introduction Injury prevention programs (IPPs) are an inherent part of training in recreational and professional sports. Providing performance-enhancing benefits in addition to injury prevention may help adjust coaches and athletes' attitudes towards implementation of injury prevention into daily routine. Conventional thinking by players and coaches alike seems to suggest that IPPs need to be specific to one's sport to allow for performance enhancement. The systematic literature review aims to firstly determine the IPPs nature of exercises and whether they are specific to the sport or based on general conditioning. Secondly, can they demonstrate whether general, sports-specific or even mixed IPPs improve key performance indicators with the aim to better facilitate long-term implementation of these programs? Methods PubMed and Web of Science were electronically searched throughout March 2018. The inclusion criteria were randomized control trials, publication dates between Jan 2006 and Feb 2018, athletes (11-45 years), injury prevention programs and included predefined performance measures that could be categorized into balance, power, strength, speed/agility and endurance. The methodological quality of included articles was assessed with the Cochrane Collaboration assessment tools. Results Of 6619 initial findings, 22 studies met the inclusion criteria. In addition, reference lists unearthed a further 6 studies, making a total of 28. Nine studies used sports specific IPPs, eleven general and eight mixed prevention strategies. Overall, general programs ranged from 29-57\% in their effectiveness across performance outcomes. Mixed IPPs improved in 80\% balance outcomes but only 20-44\% in others. Sports-specific programs led to larger scale improvements in balance (66\%), power (83\%), strength (75\%), and speed/agility (62\%). Conclusion Sports-specific IPPs have the strongest influence on most performance indices based on the significant improvement versus control groups. Other factors such as intensity, technical execution and compliance should be accounted for in future investigations in addition to exercise modality.}, language = {en} } @misc{NiedererVogtWippertetal.2016, author = {Niederer, Daniel and Vogt, Lutz and Wippert, Pia-Maria and Puschmann, Anne-Katrin and Pfeifer, Ann-Christin and Schiltenwolf, Marcus and Banzer, Winfried and Mayer, Frank}, title = {Medicine in spine exercise (MiSpEx) for nonspecific low back pain patients}, series = {Postprints der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, number = {444}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-407308}, pages = {9}, year = {2016}, abstract = {Background: Arising from the relevance of sensorimotor training in the therapy of nonspecific low back pain patients and from the value of individualized therapy, the present trial aims to test the feasibility and efficacy of individualized sensorimotor training interventions in patients suffering from nonspecific low back pain. Methods and study design: A multicentre, single-blind two-armed randomized controlled trial to evaluate the effects of a 12-week (3 weeks supervised centre-based and 9 weeks home-based) individualized sensorimotor exercise program is performed. The control group stays inactive during this period. Outcomes are pain, and pain-associated function as well as motor function in adults with nonspecific low back pain. Each participant is scheduled to five measurement dates: baseline (M1), following centre-based training (M2), following home-based training (M3) and at two follow-up time points 6 months (M4) and 12 months (M5) after M1. All investigations and the assessment of the primary and secondary outcomes are performed in a standardized order: questionnaires - clinical examination - biomechanics (motor function). Subsequent statistical procedures are executed after the examination of underlying assumptions for parametric or rather non-parametric testing. Discussion: The results and practical relevance of the study will be of clinical and practical relevance not only for researchers and policy makers but also for the general population suffering from nonspecific low back pain. Trial registration: Identification number DRKS00010129. German Clinical Trial registered on 3 March 2016.}, language = {en} } @misc{MuellerStollCasseletal.2017, author = {M{\"u}ller, Steffen and Stoll, Josefine and Cassel, Michael and Mayer, Frank}, title = {Trunk Muscle Activity during Drop Jump Performance in Adolescent Athletes with Back Pain}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-395261}, pages = {9}, year = {2017}, abstract = {In the context of back pain, great emphasis has been placed on the importance of trunk stability, especially in situations requiring compensation of repetitive, intense loading induced during high-performance activities, e.g., jumping or landing. This study aims to evaluate trunk muscle activity during drop jump in adolescent athletes with back pain (BP) compared to athletes without back pain (NBP). Eleven adolescent athletes suffering back pain (BP: m/f: n = 4/7; 15.9 ± 1.3 y; 176 ± 11 cm; 68 ± 11 kg; 12.4 ± 10.5 h/we training) and 11 matched athletes without back pain (NBP: m/f: n = 4/7; 15.5 ± 1.3 y; 174 ± 7 cm; 67 ± 8 kg; 14.9 ± 9.5 h/we training) were evaluated. Subjects conducted 3 drop jumps onto a force plate (ground reaction force). Bilateral 12-lead SEMG (surface Electromyography) was applied to assess trunk muscle activity. Ground contact time [ms], maximum vertical jump force [N], jump time [ms] and the jump performance index [m/s] were calculated for drop jumps. SEMG amplitudes (RMS: root mean square [\%]) for all 12 single muscles were normalized to MIVC (maximum isometric voluntary contraction) and analyzed in 4 time windows (100 ms pre- and 200 ms post-initial ground contact, 100 ms pre- and 200 ms post-landing) as outcome variables. In addition, muscles were grouped and analyzed in ventral and dorsal muscles, as well as straight and transverse trunk muscles. Drop jump ground reaction force variables did not differ between NBP and BP (p > 0.05). Mm obliquus externus and internus abdominis presented higher SEMG amplitudes (1.3-1.9-fold) for BP (p < 0.05). Mm rectus abdominis, erector spinae thoracic/lumbar and latissimus dorsi did not differ (p > 0.05). The muscle group analysis over the whole jumping cycle showed statistically significantly higher SEMG amplitudes for BP in the ventral (p = 0.031) and transverse muscles (p = 0.020) compared to NBP. Higher activity of transverse, but not straight, trunk muscles might indicate a specific compensation strategy to support trunk stability in athletes with back pain during drop jumps. Therefore, exercises favoring the transverse trunk muscles could be recommended for back pain treatment.}, language = {en} } @misc{MuellerMuellerStolletal.2017, author = {M{\"u}ller, Steffen and M{\"u}ller, Juliane and Stoll, Josefine and Prieske, Olaf and Cassel, Michael and Mayer, Frank}, title = {Incidence of back pain in adolescent athletes}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-101874}, pages = {5}, year = {2017}, abstract = {Background Recently, the incidence rate of back pain (BP) in adolescents has been reported at 21\%. However, the development of BP in adolescent athletes is unclear. Hence, the purpose of this study was to examine the incidence of BP in young elite athletes in relation to gender and type of sport practiced. Methods Subjective BP was assessed in 321 elite adolescent athletes (m/f 57\%/43\%; 13.2 ± 1.4 years; 163.4 ± 11.4 cm; 52.6 ± 12.6 kg; 5.0 ± 2.6 training yrs; 7.6 ± 5.3 training h/week). Initially, all athletes were free of pain. The main outcome criterion was the incidence of back pain [\%] analyzed in terms of pain development from the first measurement day (M1) to the second measurement day (M2) after 2.0 ± 1.0 year. Participants were classified into athletes who developed back pain (BPD) and athletes who did not develop back pain (nBPD). BP (acute or within the last 7 days) was assessed with a 5-step face scale (face 1-2 = no pain; face 3-5 = pain). BPD included all athletes who reported faces 1 and 2 at M1 and faces 3 to 5 at M2. nBPD were all athletes who reported face 1 or 2 at both M1 and M2. Data was analyzed descriptively. Additionally, a Chi2 test was used to analyze gender- and sport-specific differences (p = 0.05). Results Thirty-two athletes were categorized as BPD (10\%). The gender difference was 5\% (m/f: 12\%/7\%) but did not show statistical significance (p = 0.15). The incidence of BP ranged between 6 and 15\% for the different sport categories. Game sports (15\%) showed the highest, and explosive strength sports (6\%) the lowest incidence. Anthropometrics or training characteristics did not significantly influence BPD (p = 0.14 gender to p = 0.90 sports; r2 = 0.0825). Conclusions BP incidence was lower in adolescent athletes compared to young non-athletes and even to the general adult population. Consequently, it can be concluded that high-performance sports do not lead to an additional increase in back pain incidence during early adolescence. Nevertheless, back pain prevention programs should be implemented into daily training routines for sport categories identified as showing high incidence rates.}, language = {en} } @misc{MuellerCarlsohnMuelleretal.2016, author = {M{\"u}ller, Steffen and Carlsohn, Anja and M{\"u}ller, Juliane and Baur, Heiner and Mayer, Frank}, title = {Influence of Obesity on Foot Loading Characteristics in Gait for Children Aged 1 to 12 Years}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-90108}, year = {2016}, abstract = {Background Overweight and obesity are increasing health problems that are not restricted to adults only. Childhood obesity is associated with metabolic, psychological and musculoskeletal comorbidities. However, knowledge about the effect of obesity on the foot function across maturation is lacking. Decreased foot function with disproportional loading characteristics is expected for obese children. The aim of this study was to examine foot loading characteristics during gait of normal-weight, overweight and obese children aged 1-12 years. Methods A total of 10382 children aged one to twelve years were enrolled in the study. Finally, 7575 children (m/f: n = 3630/3945; 7.0 +/- 2.9yr; 1.23 +/- 0.19m; 26.6 +/- 10.6kg; BMI: 17.1 +/- 2.4kg/m(2)) were included for (complete case) data analysis. Children were categorized to normalweight (>= 3rd and <90th percentile; n = 6458), overweight (>= 90rd and <97th percentile; n = 746) or obese (>97th percentile; n = 371) according to the German reference system that is based on age and gender-specific body mass indices (BMI). Plantar pressure measurements were assessed during gait on an instrumented walkway. Contact area, arch index (AI), peak pressure (PP) and force time integral (FTI) were calculated for the total, fore-, mid-and hindfoot. Data was analyzed descriptively (mean +/- SD) followed by ANOVA/Welch-test (according to homogeneity of variances: yes/no) for group differences according to BMI categorization (normal-weight, overweight, obesity) and for each age group 1 to 12yrs (post-hoc Tukey Kramer/Dunnett's C; alpha = 0.05). Results Mean walking velocity was 0.95 +/- 0.25 m/s with no differences between normal-weight, overweight or obese children (p = 0.0841). Results show higher foot contact area, arch index, peak pressure and force time integral in overweight and obese children (p< 0.001). Obese children showed the 1.48-fold (1 year-old) to 3.49-fold (10 year-old) midfoot loading (FTI) compared to normal-weight. Conclusion Additional body mass leads to higher overall load, with disproportional impact on the midfoot area and longitudinal foot arch showing characteristic foot loading patterns. Already the feet of one and two year old children are significantly affected. Childhood overweight and obesity is not compensated by the musculoskeletal system. To avoid excessive foot loading with potential risk of discomfort or pain in childhood, prevention strategies should be developed and validated for children with a high body mass index and functional changes in the midfoot area. The presented plantar pressure values could additionally serve as reference data to identify suspicious foot loading patterns in children.}, language = {en} } @misc{MuellerEngelMuelleretal.2017, author = {M{\"u}ller, Juliane and Engel, Tilman and M{\"u}ller, Steffen and Stoll, Josefine and Baur, Heiner and Mayer, Frank}, title = {Effects of sudden walking perturbations on neuromuscular reflex activity and three-dimensional motion of the trunk in healthy controls and back pain symptomatic subjects}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-394931}, pages = {11}, year = {2017}, abstract = {Background Back pain patients (BPP) show delayed muscle onset, increased co-contractions, and variability as response to quasi-static sudden trunk loading in comparison to healthy controls (H). However, it is unclear whether these results can validly be transferred to suddenly applied walking perturbations, an automated but more functional and complex movement pattern. There is an evident need to develop research-based strategies for the rehabilitation of back pain. Therefore, the investigation of differences in trunk stability between H and BPP in functional movements is of primary interest in order to define suitable intervention regimes. The purpose of this study was to analyse neuromuscular reflex activity as well as three-dimensional trunk kinematics between H and BPP during walking perturbations. Methods Eighty H (31m/49f;29±9yrs;174±10cm;71±13kg) and 14 BPP (6m/8f;30±8yrs;171±10cm;67±14kg) walked (1m/s) on a split-belt treadmill while 15 right-sided perturbations (belt decelerating, 40m/s2, 50ms duration; 200ms after heel contact) were randomly applied. Trunk muscle activity was assessed using a 12-lead EMG set-up. Trunk kinematics were measured using a 3-segment-model consisting of 12 markers (upper thoracic (UTA), lower thoracic (LTA), lumbar area (LA)). EMG-RMS ([\%],0-200ms after perturbation) was calculated and normalized to the RMS of unperturbed gait. Latency (TON;ms) and time to maximum activity (TMAX;ms) were analysed. Total motion amplitude (ROM;[°]) and mean angle (Amean;[°]) for extension-flexion, lateral flexion and rotation were calculated (whole stride cycle; 0-200ms after perturbation) for each of the three segments during unperturbed and perturbed gait. For ROM only, perturbed was normalized to unperturbed step [\%] for the whole stride as well as the 200ms after perturbation. Data were analysed descriptively followed by a student´s t-test to account for group differences. Co-contraction was analyzed between ventral and dorsal muscles (V:R) as well as side right:side left ratio (Sright:Sleft). The coefficient of variation (CV;\%) was calculated (EMG-RMS;ROM) to evaluate variability between the 15 perturbations for all groups. With respect to unequal distribution of participants to groups, an additional matched-group analysis was conducted. Fourteen healthy controls out of group H were sex-, age- and anthropometrically matched (group Hmatched) to the BPP. Results No group differences were observed for EMG-RMS or CV analysis (EMG/ROM) (p>0.025). Co-contraction analysis revealed no differences for V:R and Srigth:Sleft between the groups (p>0.025). BPP showed an increased TON and TMAX, being significant for Mm. rectus abdominus (p = 0.019) and erector spinae T9/L3 (p = 0.005/p = 0.015). ROM analysis over the unperturbed stride cycle revealed no differences between groups (p>0.025). Normalization of perturbed to unperturbed step lead to significant differences for the lumbar segment (LA) in lateral flexion with BPP showing higher normalized ROM compared to Hmatched (p = 0.02). BPP showed a significant higher flexed posture (UTA (p = 0.02); LTA (p = 0.004)) during normal walking (Amean). Trunk posture (Amean) during perturbation showed higher trunk extension values in LTA segments for H/Hmatched compared to BPP (p = 0.003). Matched group (BPP vs. Hmatched) analysis did not show any systematic changes of all results between groups. Conclusion BPP present impaired muscle response times and trunk posture, especially in the sagittal and transversal planes, compared to H. This could indicate reduced trunk stability and higher loading during gait perturbations.}, language = {en} } @misc{MugelePlummerSteffenetal.2018, author = {Mugele, Hendrik and Plummer, Ashley and Steffen, Kathrin and Stoll, Josefine and Mayer, Frank and M{\"u}ller, Juliane}, title = {General versus sports-specific injury prevention programs in athletes}, series = {Postprints der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, number = {481}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-419935}, pages = {16}, year = {2018}, abstract = {Introduction Annually, 2 million sports-related injuries are reported in Germany of which athletes contribute to a large proportion. Multiple sport injury prevention programs designed to decrease acute and overuse injuries in athletes have been proven effective. Yet, the programs' components, general or sports-specific, that led to these positive effects are uncertain. Despite not knowing about the superiority of sports-specific injury prevention programs, coaches and athletes alike prefer more specialized rather than generalized exercise programs. Therefore, this systematic review aimed to present the available evidence on how general and sports-specific prevention programs affect injury rates in athletes. Methods PubMed and Web of Science were electronically searched throughout April 2018. The inclusion criteria were publication dates Jan 2006-Dec 2017, athletes (11-45 years), exercise-based injury prevention programs and injury incidence. The methodological quality was assessed with the Cochrane Collaboration assessment tools. Results Of the initial 6619 findings, 15 studies met the inclusion criteria. In addition, 13 studies were added from reference lists and external sources making a total of 28 studies. Of which, one used sports-specific, seven general and 20 mixed prevention strategies. Twenty-four studies revealed reduced injury rates. Of the four ineffective programs, one was general and three mixed. Conclusion The general and mixed programs positively affect injury rates. Sports-specific programs are uninvestigated and despite wide discussion regarding the definition, no consensus was reached. Defining such terminology and investigating the true effectiveness of such IPPs is a potential avenue for future research.}, language = {en} } @misc{MugelePlummerBaritelloetal.2018, author = {Mugele, Hendrik and Plummer, Ashley and Baritello, Omar and Towe, Maggie and Brecht, Pia and Mayer, Frank}, title = {Accuracy of training recommendations based on a treadmill multistage incremental exercise test}, series = {Postprints der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, number = {477}, issn = {1866-8364}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-419697}, pages = {12}, year = {2018}, abstract = {Competitive runners will occasionally undergo exercise in a laboratory setting to obtain predictive and prescriptive information regarding their performance. The present research aimed to assess whether the physiological demands of lab-based treadmill running (TM) can simulate that of over-ground (OG) running using a commonly used protocol. Fifteen healthy volunteers with a weekly mileage of ≥ 20 km over the past 6 months and treadmill experience participated in this cross-sectional study. Two stepwise incremental tests until volitional exhaustion was performed in a fixed order within one week in an Outpatient Clinic research laboratory and outdoor athletic track. Running velocity (IATspeed), heart rate (IATHR) and lactate concentration at the individual anaerobic threshold (IATbLa) were primary endpoints. Additionally, distance covered (DIST), maximal heart rate (HRmax), maximal blood lactate concentration (bLamax) and rate of perceived exertion (RPE) at IATspeed were analyzed. IATspeed, DIST and HRmax were not statistically significantly different between conditions, whereas bLamax and RPE at IATspeed showed statistical significance (p < 0.05). Apart from RPE at IATspeed, IATspeed, DIST, HRmax and bLamax strongly correlate between conditions (r = 0.815-0.988). High reliability between conditions provides strong evidence to suggest that running on a treadmill are physiologically comparable to that of OG and that training recommendations and be made with assurance.}, language = {en} } @misc{MuellerStollMuelleretal.2019, author = {Mueller, Juliane and Stoll, Josefine and Mueller, Steffen and Mayer, Frank}, title = {Dose-response relationship of core-specific sensorimotor interventions in healthy, welltrained participants}, series = {Postprints der Universit{\"a}t Potsdam Humanwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam Humanwissenschaftliche Reihe}, number = {499}, issn = {1866-8364}, doi = {10.25932/publishup-42241}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-422414}, year = {2019}, abstract = {Background: Core-specific sensorimotor exercises are proven to enhance neuromuscular activity of the trunk, improve athletic performance and prevent back pain. However, the dose-response relationship and, therefore, the dose required to improve trunk function is still under debate. The purpose of the present trial will be to compare four different intervention strategies of sensorimotor exercises that will result in improved trunk function. Methods/design: A single-blind, four-armed, randomized controlled trial with a 3-week (home-based) intervention phase and two measurement days pre and post intervention (M1/M2) is designed. Experimental procedures on both measurement days will include evaluation of maximum isokinetic and isometric trunk strength (extension/flexion, rotation) including perturbations, as well as neuromuscular trunk activity while performing strength testing. The primary outcome is trunk strength (peak torque). Neuromuscular activity (amplitude, latencies as a response to perturbation) serves as secondary outcome. The control group will perform a standardized exercise program of four sensorimotor exercises (three sets of 10 repetitions) in each of six training sessions (30 min duration) over 3 weeks. The intervention groups' programs differ in the number of exercises, sets per exercise and, therefore, overall training amount (group I: six sessions, three exercises, two sets; group II: six sessions, two exercises, two sets; group III: six sessions, one exercise, three sets). The intervention programs of groups I, II and III include additional perturbations for all exercises to increase both the difficulty and the efficacy of the exercises performed. Statistical analysis will be performed after examining the underlying assumptions for parametric and non-parametric testing. Discussion: The results of the study will be clinically relevant, not only for researchers but also for (sports) therapists, physicians, coaches, athletes and the general population who have the aim of improving trunk function.}, language = {en} } @misc{LinMayerWippert2022, author = {Lin, Chiao-I and Mayer, Frank and Wippert, Pia-Maria}, title = {The prevalence of chronic ankle instability in basketball athletes: a cross-sectional study}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Gesundheitswissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Gesundheitswissenschaftliche Reihe}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, doi = {10.25932/publishup-56589}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-565898}, pages = {1 -- 9}, year = {2022}, abstract = {Background Ankle sprain is the most common injury in basketball. Chronic ankle instability develops from an acute ankle sprain may cause negative effects on quality of life, ankle functionality or on increasing risk for recurrent ankle sprains and post-traumatic osteoarthritis. To facilitate a preventative strategy of chronic ankle instability (CAI) in the basketball population, gathering epidemiological data is essential. However, the epidemiological data of CAI in basketball is limited. Therefore, this study aims to investigate the prevalence of CAI in basketball athletes and to determine whether gender, competitive level, and basketball playing position influence this prevalence. Methods In a cross-sectional study, in total 391 Taiwanese basketball athletes from universities and sports clubs participated. Besides non-standardized questions about demographics and their history of ankle sprains, participants further filled out the standard Cumberland Ankle Instability Tool applied to determine the presence of ankle instability. Questionnaires from 255 collegiate and 133 semi-professional basketball athletes (male = 243, female = 145, 22.3 ± 3.8 years, 23.3 ± 2.2 kg/m2) were analyzed. Differences in prevalence between gender, competitive level and playing position were determined using the Chi-square test. Results In the surveyed cohort, 26\% had unilateral CAI while 50\% of them had bilateral CAI. Women had a higher prevalence than men in the whole surveyed cohort (X2(1) = 0.515, p = 0.003). This gender disparity also showed from sub-analyses, that the collegiate female athletes had a higher prevalence than collegiate men athletes (X2(1) = 0.203, p = 0.001). Prevalence showed no difference between competitive levels (p > 0.05) and among playing positions (p > 0.05). Conclusions CAI is highly prevalent in the basketball population. Gender affects the prevalence of CAI. Regardless of the competitive level and playing position the prevalence of CAI is similar. The characteristic of basketball contributes to the high prevalence. Prevention of CAI should be a focus in basketball. When applying the CAI prevention measures, gender should be taken into consideration.}, language = {en} }