@misc{BlaesiusEubeFeldtkelleretal.2018, author = {Blaesius, Thomas and Eube, Jan and Feldtkeller, Thomas and Friedrich, Tobias and Krejca, Martin Stefan and Lagodzinski, Gregor J. A. and Rothenberger, Ralf and Severin, Julius and Sommer, Fabian and Trautmann, Justin}, title = {Memory-restricted Routing With Tiled Map Data}, series = {2018 IEEE International Conference on Systems, Man, and Cybernetics (SMC)}, journal = {2018 IEEE International Conference on Systems, Man, and Cybernetics (SMC)}, publisher = {IEEE}, address = {New York}, isbn = {978-1-5386-6650-0}, issn = {1062-922X}, doi = {10.1109/SMC.2018.00567}, pages = {3347 -- 3354}, year = {2018}, abstract = {Modern routing algorithms reduce query time by depending heavily on preprocessed data. The recently developed Navigation Data Standard (NDS) enforces a separation between algorithms and map data, rendering preprocessing inapplicable. Furthermore, map data is partitioned into tiles with respect to their geographic coordinates. With the limited memory found in portable devices, the number of tiles loaded becomes the major factor for run time. We study routing under these restrictions and present new algorithms as well as empirical evaluations. Our results show that, on average, the most efficient algorithm presented uses more than 20 times fewer tile loads than a normal A*.}, language = {en} }