@article{BasavaiahWiesnerAnoopetal.2014, author = {Basavaiah, Nathani and Wiesner, M. G. and Anoop, Ambili and Menzel, P. and Nowaczyk, Norbert R. and Deenadayalan, K. and Brauer, Achim and Gaye, Birgit and Naumann, R. and Riedel, N. and Stebich, M. and Prasad, Sushma}, title = {Physicochemical analyses of surface sediments from the Lonar Lake, central India - implications for palaeoenvironmental reconstruction}, series = {Fundamental and applied limnology : official journal of the International Association of Theoretical and Applied Limnology}, volume = {184}, journal = {Fundamental and applied limnology : official journal of the International Association of Theoretical and Applied Limnology}, number = {1}, publisher = {Schweizerbart}, address = {Stuttgart}, issn = {1863-9135}, doi = {10.1127/1863-9135/2014/0515}, pages = {51 -- 68}, year = {2014}, abstract = {We report the results of our investigations on the catchment area, surface sediments, and hydrology of the monsoonal Lonar Lake, central India. Our results indicate that the lake is currently stratified with an anoxic bottom layer, and there is a spatial heterogeneity in the sensitivity of sediment parameters to different environmental processes. In the shallow (0-5 m) near shore oxic-suboxic environments the lithogenic and terrestrial organic content is high and spatially variable, and the organics show degradation in the oxic part. Due to aerial exposure resulting from lake level changes of at least 3m, the evaporitic carbonates are not completely preserved. In the deep water (>5 m) anoxic environment the lithogenics are uniformly distributed and the delta C-13 is an indicator not only for aquatic vs. terrestrial plants but also of lake pH and salinity. The isotopic composition of the evaporites is dependent not only on the isotopic composition of source water (monsoon rainfall and stream inflow) and evaporation, but is also influenced by proximity to the isotopically depleted stream inflow. We conclude that in the deep water environment lithogenic content, and isotopic composition of organic matter can be used for palaeoenvironmental reconstruction.}, language = {en} } @article{MenzelAnupamaBasavaiahetal.2015, author = {Menzel, Philip and Anupama, Krishnamurthy and Basavaiah, Nathani and Das, Brijraj Krishna and Gaye, Birgit and Herrmann, Nicole and Prasad, Sushma}, title = {The use of amino acid analyses in (palaeo-) limnological investigations: A comparative study of four Indian lakes in different climate regimes}, series = {Geochimica et cosmochimica acta : journal of the Geochemical Society and the Meteoritical Society}, volume = {160}, journal = {Geochimica et cosmochimica acta : journal of the Geochemical Society and the Meteoritical Society}, publisher = {Elsevier}, address = {Oxford}, issn = {0016-7037}, doi = {10.1016/j.gca.2015.03.028}, pages = {25 -- 37}, year = {2015}, abstract = {In the present study, we report the results of comprehensive amino acid (AA) analyses of four Indian lakes from different climate regimes. We focus on the investigation of sediment cores retrieved from the lakes but data of modern sediment as well as vascular plant, soil, and suspended particulate matter samples from individual lakes are also presented. Commonly used degradation and organic matter source indices are tested for their applicability to the lake sediments, and we discuss potential reasons for possible limitations. A principal component analysis including the monomeric AA composition of organic matter of all analysed samples indicates that differences in organic matter sources and the environmental properties of the individual lakes are responsible for the major variability in monomeric AA distribution of the different samples. However, the PCA also gives a factor that most probably separates the samples according to their state of organic matter degradation. Using the factor loadings of the individual AA monomers, we calculate a lake sediment degradation index (LI) that might be applicable to other palaeo-lake investigations. (C) 2015 Elsevier Ltd. All rights reserved.}, language = {en} } @article{MenzelGayeMishraetal.2014, author = {Menzel, Philip and Gaye, Birgit and Mishra, Praveen Kumar and Anoop, Ambili and Basavaiah, Nathani and Marwan, Norbert and Plessen, Birgit and Prasad, Sushma and Riedel, Nils and Stebich, Martina and Wiesner, Martin G.}, title = {Linking Holocene drying trends from Lonar Lake in monsoonal central India to North Atlantic cooling events}, series = {Palaeogeography, palaeoclimatology, palaeoecology : an international journal for the geo-sciences}, volume = {410}, journal = {Palaeogeography, palaeoclimatology, palaeoecology : an international journal for the geo-sciences}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0031-0182}, doi = {10.1016/j.palaeo.2014.05.044}, pages = {164 -- 178}, year = {2014}, abstract = {We present the results of biogeochemical and mineralogical analyses on a sediment core that covers the Holocene sedimentation history of the climatically sensitive, closed, saline, and alkaline Lonar Lake in the core monsoon zone in central India. We compare our results of C/N ratios, stable carbon and nitrogen isotopes, grain-size, as well as amino acid derived degradation proxies with climatically sensitive proxies of other records from South Asia and the North Atlantic region. The comparison reveals some more or less contemporaneous climate shifts. At Lonar Lake, a general long term climate transition from wet conditions during the early Holocene to drier conditions during the late Holocene, delineating the insolation curve, can be reconstructed. In addition to the previously identified periods of prolonged drought during 4.6-3.9 and 2.0-0.6 cal ka that have been attributed to temperature changes in the Indo Pacific Warm Pool, several additional phases of shorter term climate alteration superimposed upon the general climate trend can be identified. These correlate with cold phases in the North Atlantic region. The most pronounced climate deteriorations indicated by our data occurred during 62-5.2,4.6-3.9, and 2.0-0.6 cal ka BP. The strong dry phase between 4.6 and 3.9 cal ka BP at Lonar Lake corroborates the hypothesis that severe climate deterioration contributed to the decline of the Indus Civilisation about 3.9 ka BP. (C) 2014 Elsevier B.V. All rights reserved.}, language = {en} } @article{MishraAnoopSchettleretal.2015, author = {Mishra, Praveen Kumar and Anoop, Ambili and Schettler, Georg and Prasad, Sushma and Jehangir, Arshid and Menzel, Peter and Naumann, Rudolf and Yousuf, A. R. and Basavaiah, Nathani and Deenadayalan, Kannan and Wiesner, Martin G. and Gaye, Birgit}, title = {Reconstructed late Quaternary hydrological changes from Lake Tso Moriri, NW Himalaya}, series = {Quaternary international : the journal of the International Union for Quaternary Research}, volume = {371}, journal = {Quaternary international : the journal of the International Union for Quaternary Research}, publisher = {Elsevier}, address = {Oxford}, issn = {1040-6182}, doi = {10.1016/j.quaint.2014.11.040}, pages = {76 -- 86}, year = {2015}, abstract = {We present the results of our investigations on the radiocarbon dated core sediments from the Lake Tso Moriri, NW Himalaya aimed at reconstructing palaeohydrological changes in this climatically sensitive region. Based on the detailed geochemical, mineralogical and sedimentological analysis, we recognise several short-term fluctuations superimposed upon seven major palaeohydrological stages identified in this lake since similar to 26 cal ka. Stage I (>20.2 cal ka): shallow lake characterised by input of coarse-grained detrital sediments; Stage II (20.2-16.4 cal ka): lake deepening and intensification of this trend ca. 18 cal ka; Stage III (16.4-11.2 cal ka): rising lake levels with a short term wet phase (13.1-11.7 cal ka); Stage IV (11.2-8.5 cal ka): early Holocene hydrological maxima and highest lake levels inferred to have resulted from early Holocene Indian monsoon intensification, as records from central Asia indicate weaker westerlies during this interval; Stage V (8.5-5.5 cal ka): mid-Holocene climate deterioration; Stage VI (5.5-2.7 cal ka): progressive lowering of lake level; Stage VII (2.7-0 cal ka): onset of modern conditions. The reconstructed hydrological variability in Lake Tso Moriri is governed by temperature changes (meltwater inflow) and monsoon precipitation (increased runoff). A regional comparison shows considerable differences with other palaeorecords from peninsular India during late Holocene. (C) 2014 Elsevier Ltd and INQUA. All rights reserved.}, language = {en} } @article{MishraPrasadAnoopetal.2015, author = {Mishra, Praveen Kumar and Prasad, Sushma and Anoop, A. and Plessen, Birgit and Jehangir, Arshid and Gaye, Birgit and Menzel, Philip and Weise, Stephan M. and Yousuf, Abdul R.}, title = {Carbonate isotopes from high altitude Tso Moriri Lake (NW Himalayas) provide clues to late glacial and Holocene moisture source and atmospheric circulation changes}, series = {Palaeogeography, palaeoclimatology, palaeoecology : an international journal for the geo-sciences}, volume = {425}, journal = {Palaeogeography, palaeoclimatology, palaeoecology : an international journal for the geo-sciences}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0031-0182}, doi = {10.1016/j.palaeo.2015.02.031}, pages = {76 -- 83}, year = {2015}, abstract = {High resolution isotopic (delta O-18 and delta C-13) investigations on endogenic carbonates (calcite/aragonite) from Tso Moriri Lake, NW Himalaya show dramatic fluctuations during the late glacial and the early Holocene, and a persistent enrichment trend during the late Holocene. Changes in this lake are largely governed by the [input (meltwater + monsoon precipitation)/evaporationj (WE) ratio, also reflected in changes in the carbonate mineralogy with aragonite being formed during periods of lowest I/E. Using new isotopic data on endogenic carbonates in combination with the available data on geochemistry, mineralogy, and reconstructed mean annual precipitation, we demonstrate that the late glacial and early Holocene carbonate delta O-18 variability resulted from fluctuating Indian summer monsoon (ISM) precipitation in NW Himalaya. This region experienced increasing ISM precipitation between ca. 13.1 and 11.7 cal ka and highest ISM precipitation during the early Holocene (11.2-8.5 cal ka). However, during the late Holocene, evaporation was the dominant control on the carbonate delta O-18. Regional comparison of reconstructed hydrological changes from Tso Moriri Lake with other archives from the Asian summer monsoon and westerlies domain shows that the intensified westerly influence that resulted in higher lake levels (after 8 cal ka) in central Asia was not strongly felt in NW Himalaya. (C) 2015 Elsevier B.V. All rights reserved.}, language = {en} } @article{MishraPrasadJehangiretal.2018, author = {Mishra, Praveen Kumar and Prasad, Sushma and Jehangir, Arshid and Anoop, Ambili and Yousuf, Abdul R. and Gaye, Birgit}, title = {Investigating the role of meltwater versus precipitation seasonality in abrupt lake-level rise in the high-altitude Tso Moriri Lake (India)}, series = {Palaeogeography, palaeoclimatology, palaeoecology : an international journal for the geo-sciences}, volume = {493}, journal = {Palaeogeography, palaeoclimatology, palaeoecology : an international journal for the geo-sciences}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0031-0182}, doi = {10.1016/j.palaeo.2017.12.026}, pages = {20 -- 29}, year = {2018}, abstract = {We present late Quaternary lake level reconstruction from the high altitude Tso Moriri Lake (NW Indian Himalaya) using a combination of new and published data from shallow and deep water cores, and catchment geomorphology. Our reconstruction indicates two dramatic lake level increases - a late glacial (ca. 16.4-12.6 cal kyr B.P.) rise of 65 m, and a 47 m rise during the early Holocene wet phase (ca. 11.2-8.5 cal kyr B.P.) which are separated by the Younger Dryas (YD) event. We decouple the role of precipitation seasonality and snow melt using a combination of proxies sensitive to the Indian Summer Monsoon (ISM), and a regional spatio-temporal transect that provides information on the eastward penetration of the winter westerlies. A comparison of shallow and deep water cores shows that (i) the first lake level increase (similar to 65 m, ca. 16.4-12.6 cal kyr B.P.) is caused by melt water inflow triggered by the increasing summer insolation; (ii) the second lake level increase (similar to 47 m, 11.2-8.5 cal kyr B.P.) is largely caused by a rise in annual precipitation coupled with reduced summer evaporation; (iii) in contrast to the onset of ISM (Bay of Bengal branch) at ca. 14.7 ka in lower elevations in NE India, the hydroclimatic influence of ISM in the high altitude Himalaya is seen only between 12.7 and 12 cal kyr B.P., though the influence of solar insolation (via increased snowmelt) is visible from 16.4 cal kyr B.P. onwards; (iv) the eastward penetration of westerlies in Indian Himalayas is strongly influenced by the strength of the Siberian High.}, language = {en} } @article{MishraPrasadMarwanetal.2017, author = {Mishra, Praveen Kumar and Prasad, Sushma and Marwan, Norbert and Anoop, A. and Krishnan, R. and Gaye, Birgit and Basavaiah, N. and Stebich, Martina and Menzel, Philip and Riedel, Nils}, title = {Contrasting pattern of hydrological changes during the past two millennia from central and northern India}, series = {Global and planetary change}, volume = {161}, journal = {Global and planetary change}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0921-8181}, doi = {10.1016/j.gloplacha.2017.12.005}, pages = {97 -- 107}, year = {2017}, abstract = {High resolution reconstructions of the India Summer Monsoon (ISM) are essential to identify regionally different patterns of climate change and refine predictive models. We find opposing trends of hydrological proxies between northern (Sahiya cave stalagmite) and central India (Lonar Lake) between 100 and 1300 CE with the strongest anti-correlation between 810 and 1300 CE. The apparently contradictory data raise the question if these are related to widely different regional precipitation patterns or reflect human influence in/around the Lonar Lake. By comparing multiproxy data with historical records, we demonstrate that only the organic proxies in the Lonar Lake show evidence of anthropogenic impact. However, evaporite data (mineralogy and delta O-18) are indicative of precipitation/evaporation (P/E) into the Lonar Lake. Back-trajectories of air-mass circulation over northern and central India show that the relative contribution of the Bay of Bengal (BoB) branch of the ISM is crucial for determining the delta O-18 of carbonate proxies only in north India, whereas central India is affected significantly by the Arabian Sea (AS) branch of the ISM. We conclude that the delta O-18 of evaporative carbonates in the Lonar Lake reflects P/E and, in the interval under consideration, is not influenced by source water changes. The opposing trend between central and northern India can be explained by (i) persistent multidecadal droughts over central India between 810 and 1300 CE that provided an effective mechanism for strengthening sub-tropical westerly winds resulting in enhancement of wintertime (non-monsoonal) rainfall over northern parts of the Indian subcontinent, and/or (ii) increased moisture influx to northern India from the depleted BoB source waters.}, language = {en} } @article{MishratAnoopJehangiretal.2014, author = {Mishrat, Praveen K. and Anoop, A. and Jehangir, A. and Prasad, Sushma and Menze, R. and Schettler, Georg and Naumann, R. and Weise, S. and Andersen, N. and Yousuf, A. R. and Gaye, Birgit}, title = {Limnology and modern sedimentation patterns in high altitude Tso Moriri Lake, NW Himalaya - implications for proxy development}, series = {Fundamental and applied limnology : official journal of the International Association of Theoretical and Applied Limnology}, volume = {185}, journal = {Fundamental and applied limnology : official journal of the International Association of Theoretical and Applied Limnology}, number = {3-4}, publisher = {Schweizerbart}, address = {Stuttgart}, issn = {1863-9135}, doi = {10.1127/fal/2014/0664}, pages = {329 -- 348}, year = {2014}, abstract = {We report the results of our investigations on the catchment area, lake surface sediments, and hydrology of the high altitude alpine Tso Moriri Lake, NW Himalayas (India). Our results indicate that the lake is currently alkaline, and thermally stratified with an oxic bottom layer. Results from hydrochemistry and isotopic composition (delta O-18 and delta D) of inflowing streams and lake waters show that Tso Moriri Lake is an evaporative lake with contributions from both westerly source (snow melt) and Indian summer monsoon precipitation. Geochemical and mineralogical investigations on the catchment and lake surface sediments reveal the presence of authigenic aragonite in modern lake sediment. The lithogenic components reflect the inflow and sorting processes during transport into the lake, whereas the authigenic carbonate fraction can be linked to the changes in ([precipitation+meltwater]/evaporation) (I/E) balance within the lake. The spatial variability in grain size distribution within the lake surface sediments shows that the grain size data can be utilised as a proxy for transport energy and shoreline proximity in the lake basin. We have evaluated the applicability of commonly applied environmentally sensitive proxies (isotopes, mineralogy, weathering indices) for palaeoenvironmental reconstruction in the Tso Moriri Lake. Our results show that the commonly used weathering index (Rb/Sr) is not applicable due to Sr contribution from authigenic carbonates. The useful weathering indices in Tso Moriri Lake are the Si/Al and the Chemical Proxy of Alteration (CPA). Since the carbonates are formed by evaporative processes, their presence and isotopic values can be used as indicators of I/E changes in the lake.}, language = {en} } @article{PrasadMishraMenzeletal.2016, author = {Prasad, Sushma and Mishra, Praveen Kumar and Menzel, Philip and Gaye, Birgit and Jehangir, Arshid and Yousuf, Abdul R.}, title = {Testing the validity of productivity proxy indicators in high altitude Tso Moriri Lake, NW Himalaya (India)}, series = {Palaeogeography, palaeoclimatology, palaeoecology : an international journal for the geo-sciences}, volume = {449}, journal = {Palaeogeography, palaeoclimatology, palaeoecology : an international journal for the geo-sciences}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0031-0182}, doi = {10.1016/j.palaeo.2016.02.027}, pages = {421 -- 430}, year = {2016}, abstract = {We use multiple proxies (delta C-13(org), delta N-15(org), C/N, amino acids, biogenic silica) from the catchment, lake surface and core sediments to (i) identify the factors influencing conventional lacustrine primary productivity (LPP) indicators (isotopic covariance, C/N) in the sediments from the pristine high altitude Tso Moriri Lake during the late Quaternary, (ii) compare C/N and bulk organic isotopic data from the core with available biogenic silica and amino acid data to test the applicability of conventional LPP indicators during the late Quaternary, and (iii) evaluate the degree of sensitivity of LPP to climate change. Our results show that climate driven changes in water salinity and source water changes have influenced the isotopic (delta C-13, delta N-15) content of the lake water and hence the isotopic composition of bulk organic matter. Erosion has also played a role in masking the LPP as the catchment sediments from this high altitude lake have low C/N thereby casting doubt on the effectiveness of this parameter as an LPP indicator. Independent LPP indicators in Tso Moriri sediments clearly indicate that it is driven by climate change and increases during warmer periods. However, our data show that the LPP in recent times is not much higher than during the early Holocene, ruling out any impact of recent warming on LPP and therefore the possibility of large carbon sequestration in high altitude oligotrophic lakes. (C) 2016 Elsevier B.V. All rights reserved.}, language = {en} }