@phdthesis{Zapata2019, author = {Zapata, Sebastian Henao}, title = {Paleozoic to Pliocene evolution of the Andean retroarc between 26 and 28°S: interactions between tectonics, climate, and upper plate architecture}, doi = {10.25932/publishup-43903}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-439036}, school = {Universit{\"a}t Potsdam}, pages = {139}, year = {2019}, abstract = {Interactions and feedbacks between tectonics, climate, and upper plate architecture control basin geometry, relief, and depositional systems. The Andes is part of a longlived continental margin characterized by multiple tectonic cycles which have strongly modified the Andean upper plate architecture. In the Andean retroarc, spatiotemporal variations in the structure of the upper plate and tectonic regimes have resulted in marked along-strike variations in basin geometry, stratigraphy, deformational style, and mountain belt morphology. These along-strike variations include high-elevation plateaus (Altiplano and Puna) associated with a thin-skin fold-and-thrust-belt and thick-skin deformation in broken foreland basins such as the Santa Barbara system and the Sierras Pampeanas. At the confluence of the Puna Plateau, the Santa Barbara system and the Sierras Pampeanas, major along-strike changes in upper plate architecture, mountain belt morphology, basement exhumation, and deformation style can be recognized. I have used a source to sink approach to unravel the spatiotemporal tectonic evolution of the Andean retroarc between 26 and 28°S. I obtained a large low-temperature thermochronology data set from basement units which includes apatite fission track, apatite U-Th-Sm/He, and zircon U-Th/He (ZHe) cooling ages. Stratigraphic descriptions of Miocene units were temporally constrained by U-Pb LA-ICP-MS zircon ages from interbedded pyroclastic material. Modeled ZHe ages suggest that the basement of the study area was exhumed during the Famatinian orogeny (550-450 Ma), followed by a period of relative tectonic quiescence during the Paleozoic and the Triassic. The basement experienced horst exhumation during the Cretaceous development of the Salta rift. After initial exhumation, deposition of thick Cretaceous syn-rift strata caused reheating of several basement blocks within the Santa Barbara system. During the Eocene-Oligocene, the Andean compressional setting was responsible for the exhumation of several disconnected basement blocks. These exhumed blocks were separated by areas of low relief, in which humid climate and low erosion rates facilitated the development of etchplains on the crystalline basement. The exhumed basement blocks formed an Eocene to Oligocene broken foreland basin in the back-bulge depozone of the Andean foreland. During the Early Miocene, foreland basin strata filled up the preexisting Paleogene topography. The basement blocks in lower relief positions were reheated; associated geothermal gradients were higher than 25°C/km. Miocene volcanism was responsible for lateral variations on the amount of reheating along the Campo-Arenal basin. Around 12 Ma, a new deformational phase modified the drainage network and fragmented the lacustrine system. As deformation and rock uplift continued, the easily eroded sedimentary cover was efficiently removed and reworked by an ephemeral fluvial system, preventing the development of significant relief. After ~6 Ma, the low erodibility of the basement blocks which began to be exposed caused relief increase, leading to the development of stable fluvial systems. Progressive relief development modified atmospheric circulation, creating a rainfall gradient. After 3 Ma, orographic rainfall and high relief lead to the development of proximal fluvial-gravitational depositional systems in the surrounding basins.}, language = {en} } @phdthesis{Hanschmann2019, author = {Hanschmann, Raffael Tino}, title = {Stalling the engine? EU climate politics after the 'Great Recession'}, doi = {10.25932/publishup-44044}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-440441}, school = {Universit{\"a}t Potsdam}, pages = {XXVIII, 303}, year = {2019}, abstract = {This dissertation investigates the impact of the economic and fiscal crisis starting in 2008 on EU climate policy-making. While the overall number of adopted greenhouse gas emission reduction policies declined in the crisis aftermath, EU lawmakers decided to introduce new or tighten existing regulations in some important policy domains. Existing knowledge about the crisis impact on EU legislative decision-making cannot explain these inconsistencies. In response, this study develops an actor-centred conceptual framework based on rational choice institutionalism that provides a micro-level link to explain how economic crises translate into altered policy-making patterns. The core theoretical argument draws on redistributive conflicts, arguing that tensions between 'beneficiaries' and 'losers' of a regulatory initiative intensify during economic crises and spill over to the policy domain. To test this hypothesis and using social network analysis, this study analyses policy processes in three case studies: The introduction of carbon dioxide emission limits for passenger cars, the expansion of the EU Emissions Trading System to aviation, and the introduction of a regulatory framework for biofuels. The key finding is that an economic shock causes EU policy domains to polarise politically, resulting in intensified conflict and more difficult decision-making. The results also show that this process of political polarisation roots in the industry that is the subject of the regulation, and that intergovernmental bargaining among member states becomes more important, but also more difficult in times of crisis.}, language = {en} }