@phdthesis{Fitzner2024, author = {Fitzner, Maria}, title = {Cultivation of selected halophytes in saline indoor farming and modulation of cultivation conditions to optimize metabolite profiles for human nutrition}, doi = {10.25932/publishup-62697}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-626974}, school = {Universit{\"a}t Potsdam}, pages = {178}, year = {2024}, abstract = {With the many challenges facing the agricultural system, such as water scarcity, loss of arable land due to climate change, population growth, urbanization or trade disruptions, new agri-food systems are needed to ensure food security in the future. In addition, healthy diets are needed to combat non-communicable diseases. Therefore, plant-based diets rich in health-promoting plant secondary metabolites are desirable. A saline indoor farming system is representing a sustainable and resilient new agrifood system and can preserve valuable fresh water. Since indoor farming relies on artificial lighting, assessment of lighting conditions is essential. In this thesis, the cultivation of halophytes in a saline indoor farming system was evaluated and the influence of cultivation conditions were assessed in favor of improving the nutritional quality of halophytes for human consumption. Therefore, five selected edible halophyte species (Brassica oleracea var. palmifolia, Cochlearia officinalis, Atriplex hortensis, Chenopodium quinoa, and Salicornia europaea) were cultivated in saline indoor farming. The halophyte species were selected for to their salt tolerance levels and mechanisms. First, the suitability of halophytes for saline indoor farming and the influence of salinity on their nutritional properties, e.g. plant secondary metabolites and minerals, were investigated. Changes in plant performance and nutritional properties were observed as a function of salinity. The response to salinity was found to be species-specific and related to the salt tolerance mechanism of the halophytes. At their optimal salinity levels, the halophytes showed improved carotenoid content. In addition, a negative correlation was found between the nitrate and chloride content of halophytes as a function of salinity. Since chloride and nitrate can be antinutrient compounds, depending on their content, monitoring is essential, especially in halophytes. Second, regional brine water was introduced as an alternative saline water resource in the saline indoor farming system. Brine water was shown to be feasible for saline indoor farming of halophytes, as there was no adverse effect on growth or nutritional properties, e.g. carotenoids. Carotenoids were shown to be less affected by salt composition than by salt concentration. In addition, the interaction between the salinity and the light regime in indoor farming and greenhouse cultivation has been studied. There it was shown that interacting light regime and salinity alters the content of carotenoids and chlorophylls. Further, glucosinolate and nitrate content were also shown to be influenced by light regime. Finally, the influence of UVB light on halophytes was investigated using supplemental narrow-band UVB LEDs. It was shown that UVB light affects the growth, phenotype and metabolite profile of halophytes and that the UVB response is species specific. Furthermore, a modulation of carotenoid content in S. europaea could be achieved to enhance health-promoting properties and thus improve nutritional quality. This was shown to be dose-dependent and the underlying mechanisms of carotenoid accumulation were also investigated. Here it was revealed that carotenoid accumulation is related to oxidative stress. In conclusion, this work demonstrated the potential of halophytes as alternative vegetables produced in a saline indoor farming system for future diets that could contribute to ensuring food security in the future. To improve the sustainability of the saline indoor farming system, LED lamps and regional brine water could be integrated into the system. Since the nutritional properties have been shown to be influenced by salt, light regime and UVB light, these abiotic stressors must be taken into account when considering halophytes as alternative vegetables for human nutrition.}, language = {en} } @article{FitznerFrickeSchreineretal.2021, author = {Fitzner, Maria and Fricke, Anna and Schreiner, Monika and Baldermann, Susanne}, title = {Utilization of regional natural brines for the indoor cultivation of Salicornia europaea}, series = {Sustainability / Multidisciplinary Digital Publishing Institute (MDPI)}, volume = {13}, journal = {Sustainability / Multidisciplinary Digital Publishing Institute (MDPI)}, number = {21}, publisher = {MDPI}, address = {Basel}, issn = {2071-1050}, doi = {10.3390/su132112105}, pages = {12}, year = {2021}, abstract = {Scaling agriculture to the globally rising population demands new approaches for future crop production such as multilayer and multitrophic indoor farming. Moreover, there is a current trend towards sustainable local solutions for aquaculture and saline agriculture. In this context, halophytes are becoming increasingly important for research and the food industry. As Salicornia europaea is a highly salt-tolerant obligate halophyte that can be used as a food crop, indoor cultivation with saline water is of particular interest. Therefore, finding a sustainable alternative to the use of seawater in non-coastal regions is crucial. Our goal was to determine whether natural brines, which are widely distributed and often available in inland areas, provide an alternative water source for the cultivation of saline organisms. This case study investigated the potential use of natural brines for the production of S. europaea. In the control group, which reflects the optimal growth conditions, fresh weight was increased, but there was no significant difference between the treatment groups comparing natural brines with artificial sea water. A similar pattern was observed for carotenoids and chlorophylls. Individual components showed significant differences. However, within treatments, there were mostly no changes. In summary, we showed that the influence of the different chloride concentrations was higher than the salt composition. Moreover, nutrient-enriched natural brine was demonstrated to be a suitable alternative for cultivation of S. europaea in terms of yield and nutritional quality. Thus, the present study provides the first evidence for the future potential of natural brine waters for the further development of aquaculture systems and saline agriculture in inland regions.}, language = {en} }