@article{PeresHorningBornhorstetal.2019, author = {Peres, Tanara V. and Horning, Kyle J. and Bornhorst, Julia and Schwerdtle, Tanja and Bowman, Aaron B. and Aschner, Michael}, title = {Small Molecule Modifiers of In Vitro Manganese Transport Alter Toxicity In Vivo}, series = {Biological Trace Element Research}, volume = {188}, journal = {Biological Trace Element Research}, number = {1}, publisher = {Human press inc.}, address = {Totowa}, issn = {0163-4984}, doi = {10.1007/s12011-018-1531-7}, pages = {127 -- 134}, year = {2019}, abstract = {Manganese (Mn) is essential for several species and daily requirements are commonly met by an adequate diet. Mn overload may cause motor and psychiatric disturbances and may arise from an impaired or not fully developed excretion system, transporter malfunction and/or exposure to excessive levels of Mn. Therefore, deciphering processes regulating neuronal Mn homeostasis is essential to understand the mechanisms of Mn neurotoxicity. In the present study, we selected two small molecules (with opposing effects on Mn transport) from a previous high throughput screen of 40,167 to test their effects on Mn toxicity parameters in vivo using Caenorhabditis elegans. We pre-exposed worms to VU0063088 and VU0026921 for 30min followed by co-exposure for 1h with Mn and evaluated Mn accumulation, dopaminergic (DAergic) degeneration and worm survival. Control worms were exposed to vehicle (DMSO) and saline only. In pdat-1::GFP worms, with GFP labeled DAergic neurons, we observed a decrease of Mn-induced DAergic degeneration in the presence of both small molecules. This effect was also observed in an smf-2 knockout strain. SMF-2 is a regulator of Mn transport in the worms and this strain accumulates higher Mn levels. We did not observe improved survival in the presence of small molecules. Our results suggest that both VU0063088 and VU0026921 may modulate Mn levels in the worms through a mechanism that does not require SMF-2 and induce protection against Mn neurotoxicity.}, language = {en} } @article{WittMeyerEbertetal.2017, author = {Witt, Barbara and Meyer, S{\"o}ren and Ebert, Franziska and Francesconi, Kevin A. and Schwerdtle, Tanja}, title = {Toxicity of two classes of arsenolipids and their water-soluble metabolites in human differentiated neurons}, series = {Archives of toxicology : official journal of EUROTOX}, volume = {91}, journal = {Archives of toxicology : official journal of EUROTOX}, publisher = {Springer}, address = {Heidelberg}, issn = {0340-5761}, doi = {10.1007/s00204-017-1933-x}, pages = {3121 -- 3134}, year = {2017}, abstract = {Arsenolipids are lipid-soluble organoarsenic compounds, mainly occurring in marine organisms, with arsenic-containing hydrocarbons (AsHCs) and arsenic-containing fatty acids (AsFAs) representing two major subgroups. Recently, toxicity studies of several arsenolipids showed a high cytotoxic potential of those arsenolipids in human liver and bladder cells. Furthermore, feeding studies with Drosophila melanogaster indicated an accumulation of arsenolipids in the fruit fly's brain. In this study, the neurotoxic potential of three AsHCs, two AsFAs and three metabolites (dimethylarsinic acid, thio/oxo-dimethylarsenopropanoic acid) was investigated in comparison to the toxic reference arsenite (iAsIII) in fully differentiated human brain cells (LUHMES cells). Thereby, in the case of AsHCs both the cell number and cell viability were reduced in a low micromolar concentration range comparable to iAsIII, while AsFAs and the applied metabolites were less toxic. Mechanistic studies revealed that AsHCs reduced the mitochondrial membrane potential, whereas neither iAsIII nor AsFAs had an impact. Furthermore, neurotoxic mechanisms were investigated by examining the neuronal network. Here, AsHCs massively disturbed the neuronal network and induced apoptotic effects, while iAsIII and AsFAs showed comparatively lesser effects. Taking into account the substantial in vitro neurotoxic potential of the AsHCs and the fact that they could transfer across the physiological barriers of the brain, a neurotoxic potential in vivo for the AsHCs cannot be excluded and needs to be urgently characterized.}, language = {en} } @article{PeresEyngLopesetal.2015, author = {Peres, Tanara V. and Eyng, Helena and Lopes, Samantha C. and Colle, Dirleise and Goncalves, Filipe M. and Venske, Debora K. R. and Lopes, Mark W. and Ben, Juliana and Bornhorst, Julia and Schwerdtle, Tanja and Aschner, Michael A. and Farina, Marcelo and Prediger, Rui D. and Leal, Rodrigo B.}, title = {Developmental exposure to manganese induces lasting motor and cognitive impairment in rats}, series = {Neurotoxicology : the interdisciplinary journal of effects to toxic substances on the nervous system}, volume = {50}, journal = {Neurotoxicology : the interdisciplinary journal of effects to toxic substances on the nervous system}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0161-813X}, doi = {10.1016/j.neuro.2015.07.005}, pages = {28 -- 37}, year = {2015}, abstract = {Exposure to high manganese (Mn) levels may damage the basal ganglia, leading to a syndrome analogous to Parkinson's disease, with motor and cognitive impairments. The molecular mechanisms underlying Mn neurotoxicity, particularly during development, still deserve further investigation. Herein, we addressed whether early-life Mn exposure affects motor coordination and cognitive function in adulthood and potential underlying mechanisms. Male Wistar rats were exposed intraperitoneally to saline (control) or MnCl2 (5, 10 or 20 mg/kg/day) from post-natal day (PND) 8-12. Behavioral tests were performed on PND 60-65 and biochemical analysis in the striatum and hippocampus were performed on PND14 or PND70. Rats exposed to Mn (10 and 20 mg/kg) performed significantly worse on the rotarod test than controls indicating motor coordination and balance impairments. The object and social recognition tasks were used to evaluate short-term memory. Rats exposed to the highest Mn dose failed to recognize a familiar object when replaced by a novel object as well as to recognize a familiar juvenile rat after a short period of time. However, Mn did not alter olfactory discrimination ability. In addition, Mn-treated rats displayed decreased levels of non-protein thiols (e.g. glutathione) and increased levels of glial fibrillary acidic protein (GFAP) in the striatum. Moreover, Mn significantly increased hippocampal glutathione peroxidase (GPx) activity. These findings demonstrate that acute low-level exposure to Mn during a critical neurodevelopmental period causes cognitive and motor dysfunctions that last into adulthood, that are accompanied by alterations in antioxidant defense system in both the hippocampus and striatum. (C) 2015 Elsevier Inc. All rights reserved.}, language = {en} }