@article{OenerQuerebilloDavidetal.2018, author = {{\"O}ner, Ibrahim Halil and Querebillo, Christine Joy and David, Christin and Gernert, Ulrich and Walter, Carsten and Driess, Matthias and Leimk{\"u}hler, Silke and Ly, Khoa Hoang and Weidinger, Inez M.}, title = {High electromagnetic field enhancement of TiO2 nanotube electrodes}, series = {Angewandte Chemie : a journal of the Gesellschaft Deutscher Chemiker ; International edition}, volume = {57}, journal = {Angewandte Chemie : a journal of the Gesellschaft Deutscher Chemiker ; International edition}, number = {24}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1433-7851}, doi = {10.1002/anie.201802597}, pages = {7225 -- 7229}, year = {2018}, abstract = {We present the fabrication of TiO2 nanotube electrodes with high biocompatibility and extraordinary spectroscopic properties. Intense surface-enhanced resonance Raman signals of the heme unit of the redox enzyme Cytochromeb(5) were observed upon covalent immobilization of the protein matrix on the TiO2 surface, revealing overall preserved structural integrity and redox behavior. The enhancement factor could be rationally controlled by varying the electrode annealing temperature, reaching a record maximum value of over 70 at 475 degrees C. For the first time, such high values are reported for non-directly surface-interacting probes, for which the involvement of charge-transfer processes in signal amplification can be excluded. The origin of the surface enhancement is exclusively attributed to enhanced localized electric fields resulting from the specific optical properties of the nanotubular geometry of the electrode.}, language = {en} } @article{ZuelickeZuhrtChapuisatetal.1994, author = {Z{\"u}licke, Lutz and Zuhrt, Christian and Chapuisat, Xavier and Saint-Esp{\´e}s, C{\´e}cile}, title = {Internal dynamics of simple floppy molecules}, year = {1994}, language = {en} } @article{ZuelickeRagnettiNeumannetal.1996, author = {Z{\"u}licke, Lutz and Ragnetti, Francesca and Neumann, Rainer and Zuhrt, Christian}, title = {Ionized Van-der-Waals systems : structure and interactions}, series = {Technical Report / Institute of Physical and Theoretical Chemistry, Potsdam}, volume = {1996, 01}, journal = {Technical Report / Institute of Physical and Theoretical Chemistry, Potsdam}, publisher = {Univ.}, address = {Potsdam}, pages = {46 S.}, year = {1996}, language = {en} } @article{ZuelickeRagnettiNeumann1997, author = {Z{\"u}licke, Lutz and Ragnetti, Francesca and Neumann, Rainer}, title = {Ionized Van-der-Waals systems : structure and interactions}, year = {1997}, language = {en} } @article{ZuehlkeZenichowskiRiebeetal.2017, author = {Z{\"u}hlke, Martin and Zenichowski, Karl and Riebe, Daniel and Beitz, Toralf and L{\"o}hmannsr{\"o}ben, Hans-Gerd}, title = {Subambient pressure electrospray ionization ion mobility spectrometry}, series = {International journal for ion mobility spectrometry : official publication of the International Society for Ion Mobility Spectrometry}, volume = {20}, journal = {International journal for ion mobility spectrometry : official publication of the International Society for Ion Mobility Spectrometry}, publisher = {Springer}, address = {Heidelberg}, issn = {1435-6163}, doi = {10.1007/s12127-017-0215-x}, pages = {47 -- 56}, year = {2017}, abstract = {The pressure dependence of sheath gas assisted electrospray ionization (ESI) was investigated based on two complementary experimental setups, namely an ESI-ion mobility (IM) spectrometer and an ESI capillary - Faraday plate setup housed in an optically accessible vacuum chamber. The ESI-IM spectrometer is capable of working in the pressure range between 300 and 1000 mbar. Another aim was the assessment of the analytical capabilities of a subambient pressure ESI-IM spectrometer. The pressure dependence of ESI was characterized by imaging the electrospray and recording current-voltage (I-U) curves. Qualitatively different behavior was observed in both setups. While the current rises continuously with the voltage in the capillary-plate setup, a sharp increase of the current was measured in the IM spectrometer above a pressure-dependent threshold voltage. The different character can be attributed to the detection of different species in both experiments. In the capillary-plate experiment, a multitude of charged species are detected while only desolvated ions attribute to the IM spectrometer signal. This finding demonstrates the utility of IM spectrometry for the characterization of ESI, since in contrast to the capillary-plate setup, the release of ions from the electrospray droplets can be observed. The I-U curves change significantly with pressure. An important result is the reduction of the maximum current with decreasing pressure. The connected loss of ionization efficiency can be compensated by a more efficient transfer of ions in the IM spectrometer at increased E/N. Thus, similar limits of detection could be obtained at 500 mbar and 1 bar.}, language = {en} } @article{ZuehlkeSassRiebeetal.2017, author = {Z{\"u}hlke, Martin and Sass, Stephan and Riebe, Daniel and Beitz, Toralf and L{\"o}hmannsr{\"o}ben, Hans-Gerd}, title = {Real-Time Reaction Monitoring of an Organic Multistep Reaction by Electrospray Ionization-Ion Mobility Spectrometry}, series = {ChemPlusChem}, volume = {82}, journal = {ChemPlusChem}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {2192-6506}, doi = {10.1002/cplu.201700296}, pages = {1266 -- 1273}, year = {2017}, abstract = {The capability of electrospray ionization (ESI)-ion mobility (IM) spectrometry for reaction monitoring is assessed both as a stand-alone real-time technique and in combination with HPLC. A three-step chemical reaction, consisting of a Williamson ether synthesis followed by a hydrogenation and an N-alkylation step, is chosen for demonstration. Intermediates and products are determined with a drift time to mass-per-charge correlation. Addition of an HPLC column to the setup increases the separation power and allows the determination of further species. Monitoring of the intensities of the various species over the reaction time allows the detection of the end of reaction, determination of the rate-limiting step, observation of the system response in discontinuous processes, and optimization of the mass ratios of the starting materials. However, charge competition in ESI influences the quantitative detection of substances in the reaction mixture. Therefore, two different methods are investigated, which allow the quantification and investigation of reaction kinetics. The first method is based on the pre-separation of the compounds on an HPLC column and their subsequent individual detection in the ESI-IM spectrometer. The second method involves an extended calibration procedure, which considers charge competition effects and facilitates nearly real-time quantification.}, language = {en} } @article{ZuehlkeRiebeBeitzetal.2015, author = {Z{\"u}hlke, Martin and Riebe, Daniel and Beitz, Toralf and L{\"o}hmannsr{\"o}ben, Hans-Gerd and Zenichowski, Karl and Diener, Marc and Linscheid, Michael W.}, title = {An electrospray ionization-ion mobility spectrometer as detector for high-performance liquid chromatography}, series = {European journal of mass spectrometry}, volume = {21}, journal = {European journal of mass spectrometry}, number = {3}, publisher = {WeltTrends}, address = {Sussex}, issn = {1469-0667}, doi = {10.1255/ejms.1367}, pages = {391 -- 402}, year = {2015}, abstract = {The application of electrospray ionization (ESI) ion mobility (IM) spectrometry on the detection end of a high-performance liquid chromatograph has been a subject of study for some time. So far, this method has been limited to low flow rates or has required splitting of the liquid flow. This work presents a novel concept of an ESI source facilitating the stable operation of the spectrometer at flow rates between 10 mu L min(-1) and 1500 mu L min(-1) without flow splitting, advancing the T-cylinder design developed by Kurnin and co-workers. Flow rates eight times faster than previously reported were achieved because of a more efficient dispersion of the liquid at increased electrospray voltages combined with nebulization by a sheath gas. Imaging revealed the spray operation to be in a rotationally symmetric multijet-mode. The novel ESI-IM spectrometer tolerates high water contents (<= 90\%) and electrolyte concentrations up to 10 mM, meeting another condition required of high-performance liquid chromatography (HPLC) detectors. Limits of detection of 50 nM for promazine in the positive mode and 1 mu M for 1,3-dinitrobenzene in the negative mode were established. Three mixtures of reduced complexity (five surfactants, four neuroleptics, and two isomers) were separated in the millisecond regime in stand-alone operation of the spectrometer. Separations of two more complex mixtures (five neuroleptics and 13 pesticides) demonstrate the application of the spectrometer as an HPLC detector. The examples illustrate the advantages of the spectrometer over the established diode array detector, in terms of additional IM separation of substances not fully separated in the retention time domain as well as identification of substances based on their characteristic IMs.}, language = {en} } @article{ZuehlkeRiebeBeitzetal.2016, author = {Z{\"u}hlke, Martin and Riebe, Daniel and Beitz, Toralf and L{\"o}hmannsr{\"o}ben, Hans-Gerd and Andreotti, Sandro and Reinert, Knut and Zenichowski, Karl and Diener, Marc}, title = {High-performance liquid chromatography with electrospray ionization ion mobility spectrometry: Characterization, data management, and applications}, series = {Journal of separation science}, volume = {39}, journal = {Journal of separation science}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1615-9306}, doi = {10.1002/jssc.201600749}, pages = {4756 -- 4764}, year = {2016}, abstract = {The combination of high-performance liquid chromatography and electrospray ionization ion mobility spectrometry facilitates the two-dimensional separation of complex mixtures in the retention and drift time plane. The ion mobility spectrometer presented here was optimized for flow rates customarily used in high-performance liquid chromatography between 100 and 1500 mu L/min. The characterization of the system with respect to such parameters as the peak capacity of each time dimension and of the 2D spectrum was carried out based on a separation of a pesticide mixture containing 24 substances. While the total ion current chromatogram is coarsely resolved, exhibiting coelutions for a number of compounds, all substances can be separately detected in the 2D plane due to the orthogonality of the separations in retention and drift dimensions. Another major advantage of the ion mobility detector is the identification of substances based on their characteristic mobilities. Electrospray ionization allows the detection of substances lacking a chromophore. As an example, the separation of a mixture of 18 amino acids is presented. A software built upon the free mass spectrometry package OpenMS was developed for processing the extensive 2D data. The different processing steps are implemented as separate modules which can be arranged in a graphic workflow facilitating automated processing of data.}, language = {en} } @article{ZuehlkeMeilingRoderetal.2021, author = {Z{\"u}hlke, Martin and Meiling, Till Thomas and Roder, Phillip and Riebe, Daniel and Beitz, Toralf and Bald, Ilko and L{\"o}hmannsr{\"o}ben, Hans-Gerd and Janßen, Traute and Erhard, Marcel and Repp, Alexander}, title = {Photodynamic inactivation of E. coli bacteria via carbon nanodots}, series = {ACS omega / American Chemical Society}, volume = {6}, journal = {ACS omega / American Chemical Society}, number = {37}, publisher = {ACS Publications}, address = {Washington, DC}, issn = {2470-1343}, doi = {10.1021/acsomega.1c01700}, pages = {23742 -- 23749}, year = {2021}, abstract = {The increasing development of antibiotic resistance in bacteria has been a major problem for years, both in human and veterinary medicine. Prophylactic measures, such as the use of vaccines, are of great importance in reducing the use of antibiotics in livestock. These vaccines are mainly produced based on formaldehyde inactivation. However, the latter damages the recognition elements of the bacterial proteins and thus could reduce the immune response in the animal. An alternative inactivation method developed in this work is based on gentle photodynamic inactivation using carbon nanodots (CNDs) at excitation wavelengths λex > 290 nm. The photodynamic inactivation was characterized on the nonvirulent laboratory strain Escherichia coli K12 using synthesized CNDs. For a gentle inactivation, the CNDs must be absorbed into the cytoplasm of the E. coli cell. Thus, the inactivation through photoinduced formation of reactive oxygen species only takes place inside the bacterium, which means that the outer membrane is neither damaged nor altered. The loading of the CNDs into E. coli was examined using fluorescence microscopy. Complete loading of the bacterial cells could be achieved in less than 10 min. These studies revealed a reversible uptake process allowing the recovery and reuse of the CNDs after irradiation and before the administration of the vaccine. The success of photodynamic inactivation was verified by viability assays on agar. In a homemade flow photoreactor, the fastest successful irradiation of the bacteria could be carried out in 34 s. Therefore, the photodynamic inactivation based on CNDs is very effective. The membrane integrity of the bacteria after irradiation was verified by slide agglutination and atomic force microscopy. The method developed for the laboratory strain E. coli K12 could then be successfully applied to the important avian pathogens Bordetella avium and Ornithobacterium rhinotracheale to aid the development of novel vaccines.}, language = {en} } @article{ZuhrtNeumannZuelicke1999, author = {Zuhrt, Christian and Neumann, Rainer and Z{\"u}licke, Lutz}, title = {Investigation of vibrational states of the ArHCl+ cation in the electronic ground state}, year = {1999}, language = {en} } @article{ZudeSasseHashimHassetal.2019, author = {Zude-Sasse, Manuela and Hashim, Norhashila and Hass, Roland and Polley, Nabarun and Regen, Christian}, title = {Validation study for measuring absorption and reduced scattering coefficients by means of laser-induced backscattering imaging}, series = {Postharvest Biology and Technology}, volume = {153}, journal = {Postharvest Biology and Technology}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0925-5214}, doi = {10.1016/j.postharvbio.2019.04.002}, pages = {161 -- 168}, year = {2019}, abstract = {Decoupling of optical properties appears challenging, but vital to get better insight of the relationship between light and fruit attributes. In this study, nine solid phantoms capturing the ranges of absorption (μa) and reduced scattering (μs') coefficients in fruit were analysed non-destructively using laser-induced backscattering imaging (LLBI) at 1060 nm. Data analysis of LLBI was carried out on the diffuse reflectance, attenuation profile obtained by means of Farrell's diffusion theory either calculating μa [cm-1] and μs' [cm-1] in one fitting step or fitting only one optical variable and providing the other one from a destructive analysis. The nondestructive approach was approved when calculating one unknown coefficient non-destructively, while no ability of the method was found to analysis both, μa and μs', non-destructively. Setting μs' according to destructive photon density wave (PDW) spectroscopy and fitting μa resulted in root mean square error (rmse) of 18.7\% in comparison to fitting μs' resulting in rmse of 2.6\%, pointing to decreased measuring uncertainty, when the highly variable μa was known. The approach was tested on European pear, utilizing destructive PDW spectroscopy for setting one variable, while LLBI was applied for calculating the remaining coefficient. Results indicated that the optical properties of pear obtained from PDW spectroscopy as well as LLBI changed concurrently in correspondence to water content mainly. A destructive batch-wise analysis of μs' and online analysis of μa may be considered in future developments for improved fruit sorting results, when considering fruit with high variability of μs'.}, language = {en} } @article{ZucchiCorniaBoeseetal.1999, author = {Zucchi, Claudia and Cornia, Andrea and Boese, Roland and Kleinpeter, Erich and Alper, Howard and Palyi, Gyula}, title = {Preparation and molecular structures of benzyl- and phenyl-acetycobalt-carbonyls}, year = {1999}, language = {en} } @article{ZuAmsalemEggeretal.2019, author = {Zu, Fengshuo and Amsalem, Patrick and Egger, David A. and Wang, Rongbin and Wolff, Christian Michael and Fang, Honghua and Loi, Maria Antonietta and Neher, Dieter and Kronik, Leeor and Duhm, Steffen and Koch, Norbert}, title = {Constructing the Electronic Structure of CH3NH3PbI3 and CH3NH3PbBr3 Perovskite Thin Films from Single-Crystal Band Structure Measurements}, series = {The journal of physical chemistry letters}, volume = {10}, journal = {The journal of physical chemistry letters}, number = {3}, publisher = {American Chemical Society}, address = {Washington}, issn = {1948-7185}, doi = {10.1021/acs.jpclett.8b03728}, pages = {601 -- 609}, year = {2019}, abstract = {Photovoltaic cells based on halide perovskites, possessing remarkably high power conversion efficiencies have been reported. To push the development of such devices further, a comprehensive and reliable understanding of their electronic properties is essential but presently not available. To provide a solid foundation for understanding the electronic properties of polycrystalline thin films, we employ single-crystal band structure data from angle-resolved photoemission measurements. For two prototypical perovskites (CH3NH3PbBr3 and CH3NH3PbI3), we reveal the band dispersion in two high-symmetry directions and identify the global valence band maxima. With these benchmark data, we construct "standard" photoemission spectra from polycrystalline thin film samples and resolve challenges discussed in the literature for determining the valence band onset with high reliability. Within the framework laid out here, the consistency of relating the energy level alignment in perovskite-based photovoltaic and optoelectronic devices with their functional parameters is substantially enhanced.}, language = {en} } @article{ZouSchlaad2015, author = {Zou, Hua and Schlaad, Helmut}, title = {Thermoresponsive PNIPAM/Silica Nanoparticles by Direct Photopolymerization in Aqueous Media}, series = {Journal of polymer science : A, Polymer chemistry}, volume = {53}, journal = {Journal of polymer science : A, Polymer chemistry}, number = {10}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {0887-624X}, doi = {10.1002/pola.27593}, pages = {1260 -- 1267}, year = {2015}, abstract = {This article presents a simple and facile method to fabricate thermoresponsive polymer-grafted silica particles by direct surface-initiated photopolymerization of N-isopropylacrylamide (NIPAM). This method is based on silica particles bearing thiol functionalities, which are transformed into thiyl radicals by irradiation with UV light to initiate the polymerization of NIPAM in aqueous media at room temperature. The photopolymerization of NIPAM could be applied to smaller thiol-functionalized particles (approximate to 48 nm) as well as to larger particles (approximate to 692 nm). Hollow poly(NIPAM) capsules could be formed after etching away the silica cores from the composite particles. It is possible to produce tailor-made composite particles or capsules for particular applications by extending this approach to other vinyl monomers. (c) 2015 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 2015, 53, 1260-1267}, language = {en} } @article{ZivanovicKochovskiArenzetal.2018, author = {Zivanovic, Vesna and Kochovski, Zdravko and Arenz, Christoph and Lu, Yan and Kneipp, Janina}, title = {SERS and Cryo-EM Directly Reveal Different Liposome Structures during Interaction with Gold Nanoparticles}, series = {The journal of physical chemistry letters}, volume = {9}, journal = {The journal of physical chemistry letters}, number = {23}, publisher = {American Chemical Society}, address = {Washington}, issn = {1948-7185}, doi = {10.1021/acs.jpclett.8b03191}, pages = {6767 -- 6772}, year = {2018}, abstract = {The combination of gold nanoparticles with liposomes is important for nano- and biotechnology. Here, we present direct, label-free characterization of liposome structure and composition at the site of its interaction with citrate-stabilized gold nanoparticles by surface-enhanced Raman scattering (SERS) and cryogenic electron microscopy (cryo-EM). Evidenced by the vibrational spectra and cryo-EM, the gold nanoparticles destroy the bilayer structure of interacting liposomes in the presence of a high amount of citrate, while at lower citrate concentration the nanoparticles interact with the surface of the intact liposomes. The spectra of phosphatidylcholine and phosphatidylcholine/sphingomyelin liposomes show that at the site of interaction the lipid chains are in the gel phase. The SERS spectra indicate that cholesterol has strong effects on the contacts of the vesicles with the nanoparticles. By combining cryo-EM and SERS, the structure and properties of lipid nanoparticle composites could be tailored for the development of drug delivery systems.}, language = {en} } @article{ZiolkowskiBleekTwamleyetal.2012, author = {Ziolkowski, Bartosz and Bleek, Katrin and Twamley, Brendan and Fraser, Kevin J. and Byrne, Robert and Diamond, Dermot and Taubert, Andreas}, title = {Magnetic ionogels (MagIGs) based on iron oxide nanoparticles, poly(N-isopropylacrylamide), and the ionic liquid trihexyl(tetradecyl)phosphonium dicyanamide}, series = {European journal of inorganic chemistry : a journal of ChemPubSoc Europe}, journal = {European journal of inorganic chemistry : a journal of ChemPubSoc Europe}, number = {32}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1434-1948}, doi = {10.1002/ejic.201200597}, pages = {5245 -- 5251}, year = {2012}, abstract = {Magnetic ionogels (MagIGs) were prepared from organosilane-coated iron oxide nanoparticles, N-isopropylacrylamide, and the ionic liquid trihexyl(tetradecyl)phosphonium dicyanamide. The ionogels prepared with the silane-modified nanoparticles are more homogeneous than ionogels prepared with unmodified magnetite particles. The silane-modified particles are immobilized in the ionogel and are resistant tonanoparticle leaching. The modified particles also render the ionogels mechanically more stable than the ionogels synthesized with unmodified nanoparticles. The ionogels respond to external permanent magnets and are therefore prototypes of a new soft magnetic actuator.}, language = {en} } @article{ZimmermannStompsSchulteOsseilietal.2020, author = {Zimmermann, Marc and Stomps, Benjamin Ren{\´e} Harald and Schulte-Osseili, Christine and Grigoriev, Dmitry and Ewen, Dirk and Morgan, Andrew and B{\"o}ker, Alexander}, title = {Organic dye anchor peptide conjugates as an advanced coloring agent for polypropylene yarn}, series = {Textile Research Journal}, volume = {91}, journal = {Textile Research Journal}, number = {1-2}, publisher = {Sage Publ.}, address = {London}, issn = {0040-5175}, doi = {10.1177/0040517520932231}, pages = {28 -- 39}, year = {2020}, abstract = {Polypropylene as one of the world's top commodity polymers is also widely used in the textile industry. However, its non-polar nature and partially crystalline structure significantly complicate the process of industrial coloring of polypropylene. Currently, textiles made of polypropylene or with a significant proportion of polypropylene are dyed under quite harsh conditions, including the use of high pressures and temperatures, which makes this process energy intensive. This research presents a three-step synthesis of coloring agents, capable of adhering onto synthetic polypropylene yarns without harsh energy-consuming conditions. This is possible by encapsulation of organic pigments using trimethoxyphenylsilane, introduction of surface double bonds via modification of the silica shell with trimethoxysilylpropylmethacrylate and final attachment of highly adhesive anchor peptides using thiol-ene chemistry. We demonstrate the applicability of this approach by dyeing polypropylene yarns in a simple process under ambient conditions after giving a step-by-step guide for the synthesis of these new dyeing agents. Finally, the successful dyeing of the yarns is visualized, and its practicability is discussed.}, language = {en} } @article{ZimmermannJohnGrigorievetal.2018, author = {Zimmermann, Marc and John, Daniela and Grigoriev, Dmitry and Puretskiy, Nikolay and B{\"o}ker, Alexander}, title = {From 2D to 3D patches on multifunctional particles}, series = {Soft matter}, volume = {14}, journal = {Soft matter}, number = {12}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1744-683X}, doi = {10.1039/c8sm00163d}, pages = {2301 -- 2309}, year = {2018}, abstract = {A straightforward approach for the precise multifunctional surface modification of particles with three-dimensional patches using microcontact printing is presented. By comparison to previous works it was possible to not only control the diameter, but also to finely tune the thickness of the deposited layer, opening up the way for three-dimensional structures and orthogonal multifunctionality. The use of PEI as polymeric ink, PDMS stamps for microcontact printing on silica particles and the influence of different solvents during particle release on the creation of functional particles with three-dimensional patches are described. Finally, by introducing fluorescent properties by incorporation of quantum dots into patches and by particle self-assembly via avidin-biotin coupling, the versatility of this novel modification method is demonstrated.}, language = {en} } @article{ZimmermannGrigorievPuretskiyetal.2018, author = {Zimmermann, Marc and Grigoriev, Dmitry and Puretskiy, Nikolay and B{\"o}ker, Alexander}, title = {Characteristics of microcontact printing with polyelectrolyte ink for the precise preparation of patches on silica particles}, series = {RSC Advances}, volume = {8}, journal = {RSC Advances}, number = {69}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {2046-2069}, doi = {10.1039/c8ra07955b}, pages = {39241 -- 39247}, year = {2018}, abstract = {This publication demonstrates the abilities of a precise and straightforward microcontact printing approach for the preparation of patchy silica particles. In a broad particle size range, it is possible to finely tune the number and parameters of three-dimensional patches like diameter and thickness using only polyethyleneimine ink, poly(dimethoxysilane) as stamp material and a suitable release solvent.}, language = {en} } @article{ZhouXuMaetal.2021, author = {Zhou, Shuo and Xu, Xun and Ma, Nan and Jung, Friedrich and Lendlein, Andreas}, title = {Influence of sterilization conditions on sulfate-functionalized polyGGE}, series = {Clinical hemorheology and microcirculation : blood flow and vessels}, volume = {79}, journal = {Clinical hemorheology and microcirculation : blood flow and vessels}, number = {4}, publisher = {IOS Press}, address = {Amsterdam}, issn = {1386-0291}, doi = {10.3233/CH-211241}, pages = {597 -- 608}, year = {2021}, abstract = {Sulfated biomolecules are known to influence numerous biological processes in all living organisms. Particularly, they contribute to prevent and inhibit the hypercoagulation condition. The failure of polymeric implants and blood contacting devices is often related to hypercoagulation and microbial contamination. Here, bioactive sulfated biomacromolecules are mimicked by sulfation of poly(glycerol glycidyl ether) (polyGGE) films. Autoclaving, gamma-ray irradiation and ethylene oxide (EtO) gas sterilization techniques were applied to functionalized materials. The sulfate group density and hydrophilicity of sulfated polymers were decreased while chain mobility and thermal degradation were enhanced post autoclaving when compared to those after EtO sterilization. These results suggest that a quality control after sterilization is mandatory to ensure the amount and functionality of functionalized groups are retained.}, language = {en} }