@phdthesis{Arentsen2020, author = {Arentsen, Anke}, title = {Galactic archaeology with the oldest stars in the Milky Way}, doi = {10.25932/publishup-47602}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-476022}, school = {Universit{\"a}t Potsdam}, year = {2020}, abstract = {In einer dunklen Nacht kann man tausende Sterne sehen. All diese Sterne befinden sich innerhalb der Milchstraße, unsere Heimatgalaxie. Nicht alle Sterne sind gleich, sie k{\"o}nnen zum Beispiel unterschiedliche Gr{\"o}ßen, Massen, Temperaturen und Alter haben. Die schwereren Sterne leben (aus astronomischer Sicht) nicht lange, nur wenige Millionen Jahren, aber Sterne kleiner als die Sonne k{\"o}nnen mehr als zehn Milliarden Jahren alt werden. Kleine Sterne die ganz am Anfang des Universums entstanden sind leuchten immer noch. Diese uralten Sterne sind sehr hilfreich um mehr {\"u}ber das fr{\"u}he Universum, die erste Sterne und die Geschichte der Milchstraße zu erfahren. Aber wie erkennt man uralte Sterne? Anhand ihrer chemischen Fingerabdr{\"u}cke! Am Anfang des Universums gab es nur zwei chemische Elemente: Wasserstoff und Helium (und ein klein bisschen Lithium). Alle schwereren Elementen wie zum Beispiel Kohlenstoff, Kalzium und Eisen sind erst sp{\"a}ter innerhalb von Sternen und in Sternexplosionen entstanden. Je mehr Sternen geboren werden, sich entwickeln und explodieren, desto mehr chemische Elemente gibt es im Universum. Sterne die sp{\"a}ter entstehen werden mit einer gr{\"o}ßeren Menge an schweren Elementen, beziehungsweise einer gr{\"o}ßeren Metallizit{\"a}t, geboren. Im Bereich der Astronomie der sich „Galaktische Arch{\"a}ologie" nennt benutzt man Sterne mit unterschiedlichen Metallizit{\"a}ten um die Geschichte der Milchstraße zu erforschen. In dieser Doktorarbeit liegt der Fokus auf den metallarmen Sterne, da man erwartet dass diese Sterne am {\"a}ltesten sind und uns deswegen viel {\"u}ber die fr{\"u}he Geschichte erz{\"a}hlen k{\"o}nnen. Bis heute haben wir noch keinen metallfreien Stern entdeckt, aber die metall{\"a}rmsten Sterne geben uns wichtige Einblicke in das Leben und Sterben der ersten Sterne. Viele von diesen {\"a}ltesten, metall{\"a}rmsten Sternen haben unerwartet viel Kohlenstoff im Vergleich zu zum Beispiel Eisen. Diese kohlenstoffreichen, metallarmen Sterne (CEMP Sterne) erz{\"a}hlen uns etwas {\"u}ber die allerersten Sterne im Universum: sie haben relativ viel Kohlenstoff produziert. Wenn wir uns die genauen chemischen Fingerabdr{\"u}cke von CEMP Sterne angucken, erz{\"a}hlen sie uns noch viel mehr. Aber unsere Interpretation h{\"a}ngt von der Annahme ab, dass der chemische Fingerabdruck sich w{\"a}hrend des Lebens eines Sternes nicht ge{\"a}ndert hat. In dieser Dissertation werden neue Daten pr{\"a}sentiert die zeigen dass diese Annahme vielleicht zu einfach ist: viele extrem metallarme CEMP Sterne befinden sich in Doppelsternsystemen. Interaktion zwischen zwei Sternen in einem Doppelsternsystem k{\"o}nnte die Oberfl{\"a}che von CEMP Sternen verschmutzt haben. Zwar wurden die meisten CEMP Sterne h{\"o}chstwahrscheinlich nicht verschmutzt, aber wir sollten vorsichtig sein mit unserer Interpretation. Die CEMP Sterne und andere metallarme Sterne sind auch wichtig f{\"u}r unser Verst{\"a}ndnis der fr{\"u}hen Geschichte der Milchstraße. Die meisten Forscher, die metallarme Sterne studieren, suchen diese Sterne im Halo der Milchstraße: einer riesigen, diffuse Komponente die ungef{\"a}hr 1\% der Sterne in unserer Galaxie enth{\"a}lt. Modelle sagen aber vorher dass die {\"a}ltesten metallarmen Sterne sich im Zentrum der Milchstraße befinden (im „Bulge"). Das Zentrum ist leider, wegen großer Mengen Staub zwischen uns und dem Zentrum und einer {\"u}berw{\"a}ltigenden Mehrheit an metallreichen Sternen, schwierig zu beobachten. Diese Dissertation pr{\"a}sentiert Ergebnisse des „Pristine Inner Galaxy Survey" (PIGS), einer neuen Himmelsdurchmusterung, die die {\"a}ltesten Sterne im Bulge der Milchstraße sucht (und findet). PIGS benutzt Bilder mit einer Farbe, die f{\"u}r die Metallizit{\"a}t der Sterne empfindlich ist, und kann deswegen sehr effektiv die metallarmen Sterne aus Millionen anderer Sterne ausw{\"a}hlen. Von interessanten Kandidaten wurden Spektren aufgenommen und mit zwei unabh{\"a}ngigen Methoden analysiert. Mit dieser Strategie hat PIGS die bislang gr{\"o}ßte Anzahl an metallarmen Sternen in der inneren Galaxie entdeckt. Ein neues Ergebnis aus den PIGS Daten ist, dass die metall{\"a}rmeren Sterne langsamer um das Galaktische Zentrum drehen als die metallreichen Sterne, und dass sie mehr willk{\"u}rliche Bewegung zeigen. Eine zweite wichtige Leistung von PIGS ist die Entdeckung von dutzenden CEMP Sternen in der innere Galaxie, wo vorher nur zwei bekannt waren. Die neuen Ergebnisse aus dieser Dissertation helfen uns die ersten Sterne und die Geschichte der Milchstraße besser zu verstehen. Laufende und neue Himmelsdurchmusterungen in den n{\"a}chsten Jahren werden uns noch viel mehr Informationen geben: es ist eine aufregende Zeit f{\"u}r die Galaktische Arch{\"a}ologie.}, language = {en} }