@article{BatsiosGraefKoonceetal.2019, author = {Batsios, Petros and Gr{\"a}f, Ralph and Koonce, Michael P. and Larochelle, Denis A. and Meyer, Irene}, title = {Nuclear envelope organization in Dictyostelium discoideum}, series = {The international journal of developmental biology}, volume = {63}, journal = {The international journal of developmental biology}, number = {8-10}, publisher = {UBC Pr}, address = {Bilbao}, issn = {0214-6282}, doi = {10.1387/ijdb.190184rg}, pages = {509 -- 519}, year = {2019}, abstract = {The nuclear envelope consists of the outer and the inner nuclear membrane, the nuclear lamina and the nuclear pore complexes, which regulate nuclear import and export.The major constituent of the nuclear lamina of Dictyostelium is the lamin NE81. It can form filaments like B-type lamins and it interacts with Sun 1, as well as with the LEM/HeH-family protein Src1. Sun 1 and Src1 are nuclear envelope transmembrane proteins involved in the centrosome-nucleus connection and nuclear envelope stability at the nucleolar regions, respectively. In conjunction with a KASH-domain protein, Sun 1 usually forms a so-called LINC complex.Two proteins with functions reminiscent of KASH-domain proteins at the outer nuclear membrane of Dictyostelium are known; interaptin which serves as an actin connector and the kinesin Kif9 which plays a role in the microtubule-centrosome connector. However, both of these lack the conserved KASH-domain. The link of the centrosome to the nuclear envelope is essential for the insertion of the centrosome into the nuclear envelope and the appropriate spindle formation. Moreover, centrosome insertion is involved in perm eabilization of the mitotic nucleus, which ensures access of tubulin dimers and spindle assembly factors. Our recent progress in identifying key molecular players at the nuclear envelope of Dictyostelium promises further insights into the mechanisms of nuclear envelope dynamics.}, language = {en} } @misc{BatsiosRenBaumannetal.2016, author = {Batsios, Petros and Ren, Xiang and Baumann, Otto and Larochelle, Denis A. and Gr{\"a}f, Ralph}, title = {Src1 is a Protein of the Inner Nuclear Membrane Interacting with the Dictyostelium Lamin NE81}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-97033}, pages = {15}, year = {2016}, abstract = {The nuclear envelope (NE) consists of the outer and inner nuclear membrane (INM), whereby the latter is bound to the nuclear lamina. Src1 is a Dictyostelium homologue of the helix-extension-helix family of proteins, which also includes the human lamin-binding protein MAN1. Both endogenous Src1 and GFP-Src1 are localized to the NE during the entire cell cycle. Immuno-electron microscopy and light microscopy after differential detergent treatment indicated that Src1 resides in the INM. FRAP experiments with GFP-Src1 cells suggested that at least a fraction of the protein could be stably engaged in forming the nuclear lamina together with the Dictyostelium lamin NE81. Both a BioID proximity assay and mis-localization of soluble, truncated mRFP-Src1 at cytosolic clusters consisting of an intentionally mis-localized mutant of GFP-NE81 confirmed an interaction of Src1 and NE81. Expression GFP-Src11-646, a fragment C-terminally truncated after the first transmembrane domain, disrupted interaction of nuclear membranes with the nuclear lamina, as cells formed protrusions of the NE that were dependent on cytoskeletal pulling forces. Protrusions were dependent on intact microtubules but not actin filaments. Our results indicate that Src1 is required for integrity of the NE and highlight Dictyostelium as a promising model for the evolution of nuclear architecture.}, language = {en} } @article{BatsiosRenBaumannetal.2016, author = {Batsios, Petros and Ren, Xiang and Baumann, Otto and Larochelle, Denis A. and Gr{\"a}f, Ralph}, title = {Src1 is a Protein of the Inner Nuclear Membrane Interacting with the Dictyostelium Lamin NE81}, series = {Cells}, volume = {5}, journal = {Cells}, number = {1}, publisher = {MDPI}, address = {Basel}, issn = {2073-4409}, doi = {10.3390/cells5010013}, year = {2016}, abstract = {The nuclear envelope (NE) consists of the outer and inner nuclear membrane (INM), whereby the latter is bound to the nuclear lamina. Src1 is a Dictyostelium homologue of the helix-extension-helix family of proteins, which also includes the human lamin-binding protein MAN1. Both endogenous Src1 and GFP-Src1 are localized to the NE during the entire cell cycle. Immuno-electron microscopy and light microscopy after differential detergent treatment indicated that Src1 resides in the INM. FRAP experiments with GFP-Src1 cells suggested that at least a fraction of the protein could be stably engaged in forming the nuclear lamina together with the Dictyostelium lamin NE81. Both a BioID proximity assay and mis-localization of soluble, truncated mRFP-Src1 at cytosolic clusters consisting of an intentionally mis-localized mutant of GFP-NE81 confirmed an interaction of Src1 and NE81. Expression GFP-Src11-646, a fragment C-terminally truncated after the first transmembrane domain, disrupted interaction of nuclear membranes with the nuclear lamina, as cells formed protrusions of the NE that were dependent on cytoskeletal pulling forces. Protrusions were dependent on intact microtubules but not actin filaments. Our results indicate that Src1 is required for integrity of the NE and highlight Dictyostelium as a promising model for the evolution of nuclear architecture.}, language = {en} } @phdthesis{Grafe2019, author = {Grafe, Marianne Erika}, title = {Analysis of supramolecular assemblies of NE81, the first lamin protein in a non-metazoan organism}, doi = {10.25932/publishup-44180}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-441802}, school = {Universit{\"a}t Potsdam}, pages = {V, 94}, year = {2019}, abstract = {Lamine sind Proteine an der inneren Kernh{\"u}lle und bilden zusammen mit verbundenen Proteinen die nukle{\"a}re Lamina. Dieses Netzwerk sorgt f{\"u}r die Stabilit{\"a}t des Zellkerns und unterst{\"u}tzt die Organisation des Zell-Zytoskeletts. Zus{\"a}tzlich sind Lamine und ihre verbundenen Proteine in viele Prozesse wie Genregulation und Zelldifferenzierung involviert. Bis 2012 war der Stand der Forschung, dass nur bei mehrzelligen Organismen eine nukle{\"a}re Lamina zu finden ist. NE81 ist das erste lamin-{\"a}hnliche Protein, das in einem nicht-mehrzelligen Organismus (Dictyostelium discoideum) entdeckt wurde. Es hat viele Eigenschaften und Strukturmerkmale mit Laminen gemeinsam. Dazu z{\"a}hlt der dreiteilige Aufbau des Proteins, eine Phosphorylierungsstelle f{\"u}r ein Zellzyklus-abh{\"a}ngiges Enzym, ein Kernlokalisationssignal, wodurch das Protein in den Kern transportiert wird, sowie eine C-terminale Sequenz zur Verankerung des Proteins in der Kernh{\"u}lle. In dieser Arbeit wurden verschiedene Methoden zur vereinfachten Untersuchung von Laminstrukturen getestet, um zu zeigen, dass sich NE81 wie bereits bekannte Lamin-Proteine verh{\"a}lt und supramolekulare Netzwerke aus Laminfilamenten bildet. Zur Analyse der Struktur supramolekularer Anordnungen wurde das Protein durch Entfernen des Kernlokalisationssignals auf der {\"a}ußeren Kernh{\"u}lle von Dictyostelium gebildet. Die anschließende Untersuchung der Oberfl{\"a}che der Kerne mit einem Rasterelektronenmikroskop zeigte, dass NE81 Strukturen in der Gr{\"o}ße von Laminen bildet, allerdings nicht in regelm{\"a}ßigen filament{\"o}sen Anordnungen. Um die Entstehung der Laminfilamente zu untersuchen, wurde l{\"o}sliches NE81 aus Dictyostelium aufgereinigt und mit verschiedenen mikroskopischen Methoden untersucht. Dabei wurde festgestellt, dass NE81 unter Niedrigsalz-Bedingungen d{\"u}nne, fadenf{\"o}rmige Strukturen und Netzwerke ausbildet, die denen von S{\"a}ugetier-Laminen sehr {\"a}hnlich sind. Die Mutation der Phosphorylierungsstelle von NE81 zu einer imitierenden dauerhaften Phosphorylierung von NE81 in der Zelle, zeigte zun{\"a}chst ein gel{\"o}stes Protein, das {\"u}berraschenderweise unter Blaulichtbestrahlung der Zelle wieder lamin-{\"a}hnliche Anordnungen formte. Die Ergebnisse dieser Arbeit zeigen, dass NE81 echte Laminstrukturen ausbilden kann und hebt Dictyostelium als Nicht-S{\"a}ugetier-Modellorganismus mit einer gut charakterisierten Kernh{\"u}lle, mit allen relevanten, aus tierischen Zellen bekannten Proteinen, hervor.}, language = {en} } @article{GrafeHofmannBatsiosetal.2020, author = {Grafe, Marianne and Hofmann, Phillip and Batsios, Petros and Meyer, Irene and Gr{\"a}f, Ralph}, title = {In vivo assembly of a Dictyostelium lamin mutant induced by light, mechanical stress, and pH}, series = {Cells : open access journal}, volume = {9}, journal = {Cells : open access journal}, number = {8}, publisher = {MDPI}, address = {Basel}, issn = {2073-4409}, doi = {10.3390/cells9081834}, pages = {14}, year = {2020}, abstract = {We expressedDictyosteliumlamin (NE81) lacking both a functional nuclear localization signal and a CAAX-box for C-terminal lipid modification. This lamin mutant assembled into supramolecular, three-dimensional clusters in the cytosol that disassembled at the onset of mitosis and re-assembled in late telophase, thus mimicking the behavior of the endogenous protein. As disassembly is regulated by CDK1-mediated phosphorylation at serine 122, we generated a phosphomimetic S122E mutant called GFP-NE81-S122E-Delta NLS Delta CLIM. Surprisingly, during imaging, the fusion protein assembled into cytosolic clusters, similar to the protein lacking the phosphomimetic mutation. Clusters disassembled again in the darkness. Assembly could be induced with blue but not green or near ultraviolet light, and it was independent of the fusion tag. Assembly similarly occurred upon cell flattening. Earlier reports and own observations suggested that both blue light and cell flattening could result in a decrease of intracellular pH. Indeed, keeping the cells at low pH also reversibly induced cluster formation. Our results indicate that lamin assembly can be induced by various stress factors and that these are transduced via intracellular acidification. Although these effects have been shown in a phosphomimetic CDK1 mutant of theDictyosteliumlamin, they are likely relevant also for wild-type lamin.}, language = {en} } @article{GrafeHofmannBatsiosetal.2020, author = {Grafe, Marianne and Hofmann, Phillip and Batsios, Petros and Meyer, Irene and Gr{\"a}f, Ralph}, title = {In vivo assembly of a Dictyostelium lamin mutant induced by light, mechanical stress, and pH}, series = {Cells}, volume = {9}, journal = {Cells}, number = {8}, publisher = {MDPI}, address = {Basel}, pages = {14}, year = {2020}, abstract = {We expressed Dictyostelium lamin (NE81) lacking both a functional nuclear localization signal and a CAAX-box for C-terminal lipid modification. This lamin mutant assembled into supramolecular, three-dimensional clusters in the cytosol that disassembled at the onset of mitosis and re-assembled in late telophase, thus mimicking the behavior of the endogenous protein. As disassembly is regulated by CDK1-mediated phosphorylation at serine 122, we generated a phosphomimetic S122E mutant called GFP-NE81-S122E-∆NLS∆CLIM. Surprisingly, during imaging, the fusion protein assembled into cytosolic clusters, similar to the protein lacking the phosphomimetic mutation. Clusters disassembled again in the darkness. Assembly could be induced with blue but not green or near ultraviolet light, and it was independent of the fusion tag. Assembly similarly occurred upon cell flattening. Earlier reports and own observations suggested that both blue light and cell flattening could result in a decrease of intracellular pH. Indeed, keeping the cells at low pH also reversibly induced cluster formation. Our results indicate that lamin assembly can be induced by various stress factors and that these are transduced via intracellular acidification. Although these effects have been shown in a phosphomimetic CDK1 mutant of the Dictyostelium lamin, they are likely relevant also for wild-type lamin.}, language = {en} } @misc{GrafeHofmannBatsiosetal.2020, author = {Grafe, Marianne and Hofmann, Phillip and Batsios, Petros and Meyer, Irene and Gr{\"a}f, Ralph}, title = {In vivo assembly of a Dictyostelium lamin mutant induced by light, mechanical stress, and pH}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {8}, issn = {1866-8372}, doi = {10.25932/publishup-52507}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-525075}, pages = {16}, year = {2020}, abstract = {We expressed Dictyostelium lamin (NE81) lacking both a functional nuclear localization signal and a CAAX-box for C-terminal lipid modification. This lamin mutant assembled into supramolecular, three-dimensional clusters in the cytosol that disassembled at the onset of mitosis and re-assembled in late telophase, thus mimicking the behavior of the endogenous protein. As disassembly is regulated by CDK1-mediated phosphorylation at serine 122, we generated a phosphomimetic S122E mutant called GFP-NE81-S122E-∆NLS∆CLIM. Surprisingly, during imaging, the fusion protein assembled into cytosolic clusters, similar to the protein lacking the phosphomimetic mutation. Clusters disassembled again in the darkness. Assembly could be induced with blue but not green or near ultraviolet light, and it was independent of the fusion tag. Assembly similarly occurred upon cell flattening. Earlier reports and own observations suggested that both blue light and cell flattening could result in a decrease of intracellular pH. Indeed, keeping the cells at low pH also reversibly induced cluster formation. Our results indicate that lamin assembly can be induced by various stress factors and that these are transduced via intracellular acidification. Although these effects have been shown in a phosphomimetic CDK1 mutant of the Dictyostelium lamin, they are likely relevant also for wild-type lamin.}, language = {en} } @article{GraefGrafeMeyeretal.2021, author = {Gr{\"a}f, Ralph and Grafe, Marianne and Meyer, Irene and Mitic, Kristina and Pitzen, Valentin}, title = {The dictyostelium centrosome}, series = {Cells : open access journal}, volume = {10}, journal = {Cells : open access journal}, number = {10}, publisher = {MDPI}, address = {Basel}, issn = {2073-4409}, doi = {10.3390/cells10102657}, pages = {26}, year = {2021}, abstract = {The centrosome of Dictyostelium amoebae contains no centrioles and consists of a cylindrical layered core structure surrounded by a corona harboring microtubule-nucleating gamma-tubulin complexes. It is the major centrosomal model beyond animals and yeasts. Proteomics, protein interaction studies by BioID and superresolution microscopy methods led to considerable progress in our understanding of the composition, structure and function of this centrosome type. We discuss all currently known components of the Dictyostelium centrosome in comparison to other centrosomes of animals and yeasts.}, language = {en} } @article{JunemannWinterhoffNordholzetal.2013, author = {Junemann, Alexander and Winterhoff, Moritz and Nordholz, Benjamin and Rottner, Klemens and Eichinger, Ludwig and Gr{\"a}f, Ralph and Faix, Jan}, title = {ForC lacks canonical formin activity but bundles actin filaments and is required for multicellular development of Dictyostelium cells}, series = {European journal of cell biology}, volume = {92}, journal = {European journal of cell biology}, number = {6-7}, publisher = {Elsevier}, address = {Jena}, issn = {0171-9335}, doi = {10.1016/j.ejcb.2013.07.001}, pages = {201 -- 212}, year = {2013}, abstract = {Diaphanous-related formins (DRFs) drive the nucleation and elongation of linear actin filaments downstream of Rho GTPase signalling pathways. Dictyostelium formin C (ForC) resembles a DRF, except that it lacks a genuine formin homology domain 1 (FH1), raising the questions whether or not ForC can nucleate and elongate actin filaments. We found that a recombinant ForC-FH2 fragment does not nucleate actin polymerization, but moderately decreases the rate of spontaneous actin assembly and disassembly, although the barbed-end elongation rate in the presence of the formin was not markedly changed. However, the protein bound to and crosslinked actin filaments into loose bundles of mixed polarity. Furthermore, ForC is an important regulator of morphogenesis since ForC-null cells are severely impaired in development resulting in the formation of aberrant fruiting bodies. Immunoblotting revealed that ForC is absent during growth, but becomes detectable at the onset of early aggregation when cells chemotactically stream together to form a multicellular organism, and peaks around the culmination stage. Fluorescence microscopy of cells ectopically expressing a GFP-tagged, N-terminal ForC fragment showed its prominent accumulation in the leading edge, suggesting that ForC may play a role in cell migration. In agreement with its expression profile, no defects were observed in random migration of vegetative mutant cells. Notably, chemotaxis of starved cells towards a source of cAMP was severely impaired as opposed to control. This was, however, largely due to a marked developmental delay of the mutant, as evidenced by the expression profile of the early developmental marker csA. In line with this, chemotaxis was almost restored to wild type levels after prolonged starvation. Finally, we observed a complete failure of phototaxis due to abolished slug formation and a massive reduction of spores consistent with forC promoter-driven expression of beta-galactosidase in prespore cells. Together, these findings demonstrate ForC to be critically involved in signalling of the cytoskeleton during various stages of development.}, language = {en} } @article{KoonceTikhonenkoGraef2020, author = {Koonce, Michael and Tikhonenko, Irina and Gr{\"a}f, Ralph}, title = {Dictyostelium cell fixation}, series = {Methods and protocols}, volume = {3}, journal = {Methods and protocols}, number = {3}, publisher = {MDPI}, address = {Basel}, issn = {2409-9279}, doi = {10.3390/mps3030047}, pages = {6}, year = {2020}, abstract = {We share two simple modifications to enhance the fixation and imaging of relatively small, motile, and rounded model cells. These include cell centrifugation and the addition of trace amounts of glutaraldehyde to existing fixation methods. Though they need to be carefully considered in each context, they have been useful to our studies of the spatial relationships of the microtubule cytoskeletal system.}, language = {en} } @phdthesis{Krueger2011, author = {Kr{\"u}ger, Anne}, title = {Molekulare Charakterisierung von NE81 und CP75, zwei kernh{\"u}llen- und centrosomassoziierten Proteinen in Dictyostelium discoideum}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-53915}, school = {Universit{\"a}t Potsdam}, year = {2011}, abstract = {Lamine bilden zusammen mit laminassoziierten Proteinen die nukle{\"a}re Lamina. Diese ist notwendig f{\"u}r die mechanische Stabilit{\"a}t von Zellen, die Organisation des Chromatins, der Genexpression, dem Fortgang des Zellzyklus und der Zellmigration. Die vielf{\"a}ltigen Funktionen der Lamine werden durch die Pathogenese von Laminopathien belegt. Zu diesen Erkrankungen, welche ihre Ursache in Mutationen innerhalb der laminkodierenden Gene, oder der Gene laminassoziierter bzw. laminprozessierender Proteine haben, z{\"a}hlen unter anderem das „Hutchinson-Gilford Progerie Syndrom", die „Emery-Dreifuss" Muskeldystrophie und die dilatierte Kardiomyopathie. Trotz der fundamentalen Bedeutung der Lamine, wurden diese bisher nur in Metazoen und nicht in einzelligen Organismen detektiert. Der am{\"o}bide Organismus Dictyostelium discoideum ist ein haploider Eukaryot, der h{\"a}ufig als Modellorganismus in den verschiedensten Bereichen der Zellbiologie eingesetzt wird. Mit der Entdeckung von NE81, einem Protein das mit der inneren Kernh{\"u}lle von Dictyostelium discoideum assoziiert ist, wurde erstmals ein Protein identifiziert, dass man aufgrund seiner Eigenschaften als lamin{\"a}hnliches Protein in einem niederen Eukaryoten bezeichnen kann. Diese Merkmale umfassen die Existenz lamintypischer Sequenzen, wie die CDK1-Phosphorylierungsstelle, direkt gefolgt von einer zentralen „Rod"-Dom{\"a}ne, sowie eine typische NLS und die hoch konservierte CaaX-Box. F{\"u}r die Etablierung des NE81 als „primitives" Lamin, wurden im Rahmen dieser Arbeit verschiedene Experimente durchgef{\"u}hrt, die strukturelle und funktionelle Gemeinsamkeiten zu den Laminen in anderen Organismen aufzeigen konnten. Die Herstellung eines polyklonalen Antik{\"o}rpers erm{\"o}glichte die Verifizierung der subzellul{\"a}ren Lokalisation des NE81 durch Elektronenmikroskopie und gab Einblicke in das Verhalten des endogenen Proteins innerhalb des Zellzyklus. Mit der Generierung von NE81-Nullmutanten konnte demonstriert werden, dass NE81 eine wichtige Rolle bei der nukle{\"a}ren Integrit{\"a}t und der Chromatinorganisation von Zellen spielt. Des Weiteren f{\"u}hrte die Expression von zwei CaaX-Box deletierten NE81 - Varianten dazu, den Einfluss des Proteins auf die mechanische Stabilit{\"a}t der Zellen nachweisen zu k{\"o}nnen. Auch die Bedeutung der hochkonservierten CaaX-Box f{\"u}r die Lokalisation des Proteins wurde durch die erhaltenen Ergebnisse deutlich. Mit der Durchf{\"u}hrung von FRAP-Experimente konnte außerdem die strukturgebende Funktion von NE81 innerhalb des Zellkerns bekr{\"a}ftigt werden. Zus{\"a}tzlich wurde im Rahmen dieser Arbeit damit begonnen, den Einfluss der Isoprenylcysteincarboxylmethyltransferase auf die Lokalisation des Proteins aufzukl{\"a}ren. Die Entdeckung eines lamin{\"a}hnlichen Proteins in einem einzelligen Organismus, der an der Schwelle zu den Metazoen steht, ist f{\"u}r die evolution{\"a}re Betrachtung der Entwicklung der sozialen Am{\"o}be und f{\"u}r die Erforschung der molekularen Basis von Laminopathien in einem einfachen Modellorganismus sehr interessant. Die Arbeit mit Dictyostelium discoideum k{\"o}nnte daher Wege aufzeigen, dass Studium der Laminopathien am Tiermodell drastisch zu reduzieren. In den letzten Jahren hat die Erforschung unbekannter Bestandteile des Centrosoms in Dictyostelium discoideum große Fortschritte gemacht. Eine zu diesem Zwecke von unserer Arbeitsgruppe durchgef{\"u}hrte Proteomstudie, f{\"u}hrte zur Identifizierung weiterer, potentiell centrosomaler Kandidatenproteine. Der zweite Teil dieser Arbeit besch{\"a}ftigt sich mit der Charakterisierung eines solchen Kandidatenproteins, dem CP75. Es konnte gezeigt werden, dass CP75 einen echten, centrosomalen Bestandteil darstellt, der mikrotubuli-unabh{\"a}ngig mit der Core Struktur des Zellorganells assoziiert ist. Weiterhin wurde deutlich, dass die Lokalisation am Centrosom in Abh{\"a}ngigkeit vom Zellzyklus erfolgt und CP75 vermutlich mit CP39, einem weiteren centrosomalen Core Protein, interagiert.}, language = {de} } @phdthesis{Kuhnert2012, author = {Kuhnert, Oliver}, title = {Charakterisierung der neuen centrosomalen Proteine CP148 und CP55 in Dictyostelium discoideum}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-59949}, school = {Universit{\"a}t Potsdam}, year = {2012}, abstract = {Das im Cytosol liegende Dictyostelium Centrosom ist aus einer geschichteten Core-Region aufgebaut, die von einer Mikrotubuli-nukleierenden Corona umgeben ist. Zudem ist es {\"u}ber eine spezifische Verbindung eng an den Kern gekn{\"u}pft und durch die Kernmembran hindurch mit den geclusterten Centromeren verbunden. Beim G2/M {\"U}bergang dissoziiert die Corona vom Centrosom und der Core verdoppelt sich so dass zwei Spindelpole entstehen. CP55 und CP148 wurden in einer Proteom-Analyse des Centrosoms identifiziert. CP148 ist ein neues coiled-coil Protein der centrosomalen Corona. Es zeigt eine zellzyklusabh{\"a}ngige An- und Abwesenheit am Centrosom, die mit der Dissoziation der Corona in der Prophase und ihrer Neubildung in der Telophase korreliert. W{\"a}hrend der Telophase erschienen in GFP-CP148 exprimierenden Zellen viele, kleine GFP-CP148-Foci im Cytoplasma, die zum Teil miteinander fusionierten und zum Centrosom wanderten. Daraus resultierte eine hypertrophe Corona in Zellen mit starker GFP-CP148 {\"U}berexpression. Ein Knockdown von CP148 durch RNAi f{\"u}hrte zu einem Verlust der Corona und einem ungeordneten Interphase Mikrotubuli-Cytoskelett. Die Bildung der mitotischen Spindel und der astralen Mikrotubuli blieb davon unbeeinflusst. Das bedeutet, dass die Mikrotubuli-Nukleationskomplexe w{\"a}hrend der Interphase und Mitose {\"u}ber verschiedene Wege mit dem Core assoziiert sind. Des Weiteren bewirkte der Knockdown eine Dispersion der Centromere sowie eine ver{\"a}nderte Sun1 Lokalisation in der Kernh{\"u}lle. Somit spielt CP148 ebenso eine Rolle in der Centrosomen-Centromer-Verbindung. Zusammengefasst ist CP148 ein essentielles Protein f{\"u}r die Bildung und Organisation der Corona, welche wiederum f{\"u}r die Centrosom/Centromer Verbindung ben{\"o}tigt wird. CP55 wurde als Protein der Core-Region identifiziert und verbleibt w{\"a}hrend des Zellzyklus am Centrosom. Dort besitzt es strukturelle Aufgaben, da die Mehrheit der GFP-CP55 Molek{\"u}le in der Interphase keine Mobilit{\"a}t zeigten. Die GFP-CP55 {\"U}berexpression f{\"u}hrte zur Bildung von {\"u}berz{\"a}hligen Centrosomen mit der {\"u}blichen Ausstattung an Markerproteinen der Corona und des Cores. CP55 Knockout-Zellen waren durch eine erh{\"o}hte Ploidie, eine weniger strukturierte und leicht vergr{\"o}ßerte Corona sowie zus{\"a}tzliche cytosolische Mikrotubuli-organisierende Zentren charakterisiert. Letztere entstanden in der Telophase und enthielten nur Corona- aber keine Core-Proteine. In CP55 k/o Zellen erfolgte die Rekrutierung des Corona-Organisators CP148 an den Spindelpol bereits in der fr{\"u}hen Metaphase anstatt, wie {\"u}blich, erst in der Telophase. Außerdem zeigten die Knockout-Zellen Wachstumsdefekte, deren Grund vermutlich Schwierigkeiten bei der Centrosomenverdopplung in der Prophase durch das Fehlen von CP55 waren. Dar{\"u}ber hinaus konnten die Knockout-Zellen phagozytiertes Material nicht verwerten, obwohl der Vorgang der Phagozytose nicht beeintr{\"a}chtigt war. Dieser Defekt kann dem im CP55 k/o auftretenden dispergierten Golgi-Apparat zugeschrieben werden.}, language = {de} } @article{KuhnertBaumannMeyeretal.2012, author = {Kuhnert, Oliver and Baumann, Otto and Meyer, Irene and Gr{\"a}f, Ralph}, title = {CP55, a novel key component of centrosomal organization in dictyostelium}, series = {Cellular and molecular life sciences}, volume = {69}, journal = {Cellular and molecular life sciences}, number = {21}, publisher = {Springer}, address = {Basel}, issn = {1420-682X}, doi = {10.1007/s00018-012-1040-3}, pages = {3651 -- 3664}, year = {2012}, abstract = {Dictyostelium centrosomes consist of a layered core structure surrounded by a microtubule-nucleating corona. At the G2/M transition, the corona dissociates and the core structure duplicates, yielding two spindle pole bodies. Finally, in telophase, the spindle poles mature into two new, complete centrosomes. CP55 was identified in a centrosomal proteome analysis. It is a component of the centrosomal core structure, and persists at the centrosome throughout the entire cell cycle. FRAP experiments revealed that during interphase the majority of centrosomal GFP-CP55 is immobile, which indicates a structural task of CP55 at the centrosome. The CP55null mutant is characterized by increased ploidy, a less structured, slightly enlarged corona, and by supernumerary, cytosolic MTOCs, containing only corona proteins and lacking a core structure. Live cell imaging showed that supernumerary MTOCs arise in telophase. Lack of CP55 also caused premature recruitment of the corona organizer CP148 to mitotic spindle poles, already in metaphase instead of telophase. Forces transmitted through astral microtubules may expel prematurely acquired or loosely attached corona fragments into the cytosol, where they act as independent MTOCs. CP55null cells were also impaired in growth, most probably due to difficulties in centrosome splitting during prophase. Furthermore, although they were still capable of phagocytosis, they appeared unable to utilize phagocytosed nutrients. This inability may be attributed to their partially disorganized Golgi apparatus.}, language = {en} } @article{KuhnertBaumannMeyeretal.2012, author = {Kuhnert, Oliver and Baumann, Otto and Meyer, Irene and Gr{\"a}f, Ralph}, title = {Functional characterization of CP148, a novel key component for centrosome integrity in Dictyostelium}, series = {Cellular and molecular life sciences}, volume = {69}, journal = {Cellular and molecular life sciences}, number = {11}, publisher = {Springer}, address = {Basel}, issn = {1420-682X}, doi = {10.1007/s00018-011-0904-2}, pages = {1875 -- 1888}, year = {2012}, abstract = {The centrosome consists of a layered core structure surrounded by a microtubule-nucleating corona. A tight linkage through the nuclear envelope connects the cytosolic centrosome with the clustered centromeres within the nuclear matrix. At G2/M the corona dissociates, and the core structure duplicates, yielding two spindle poles. CP148 is a novel coiled coil protein of the centrosomal corona. GFP-CP148 exhibited cell cycle-dependent presence and absence at the centrosome, which correlates with dissociation of the corona in prophase and its reformation in late telophase. During telophase, GFP-CP148 formed cytosolic foci, which coalesced and joined the centrosome. This explains the hypertrophic appearance of the corona upon strong overexpression of GFP-CP148. Depletion of CP148 by RNAi caused virtual loss of the corona and disorganization of interphase microtubules. Surprisingly, formation of the mitotic spindle and astral microtubules was unaffected. Thus, microtubule nucleation complexes associate with centrosomal core components through different means during interphase and mitosis. Furthermore, CP148 RNAi caused dispersal of centromeres and altered Sun1 distribution at the nuclear envelope, suggesting a role of CP148 in the linkage between centrosomes and centromeres. Taken together, CP148 is an essential factor for the formation of the centrosomal corona, which in turn is required for centrosome/centromere linkage.}, language = {en} } @misc{MeyerKuhnertGraef2011, author = {Meyer, Irene and Kuhnert, Oliver and Gr{\"a}f, Ralph}, title = {Functional analyses of lissencephaly-related proteins in Dictyostelium}, series = {Seminars in cell \& developmental biology}, volume = {22}, journal = {Seminars in cell \& developmental biology}, number = {1}, publisher = {Elsevier}, address = {London}, issn = {1084-9521}, doi = {10.1016/j.semcdb.2010.10.007}, pages = {89 -- 96}, year = {2011}, abstract = {Lissencephaly is a severe brain developmental disease in human infants, which is usually caused by mutations in either of two genes, LIS1 and DCX. These genes encode proteins interacting with both the microtubule and the actin systems. Here, we review the implications of data on Dictyostelium LIS1 for the elucidation of LIS1 function in higher cells and emphasize the role of LIS1 and nuclear envelope proteins in nuclear positioning, which is also important for coordinated cell migration during neocortical development. Furthermore, for the first time we characterize Dictyostelium DCX, the only bona fide orthologue of human DCX outside the animal kingdom. We show that DCX functionally interacts with LIS1 and that both proteins have a cytoskeleton-independent function in chemotactic signaling during development. Dictyostelium LIS1 is also required for proper attachment of the centrosome to the nucleus and, thus, nuclear positioning, where the association of these two organelles has turned out to be crucial. It involves not only dynein and dynein-associated proteins such as LIS1 but also SUN proteins of the nuclear envelope. Analyses of Dictyostelium SUN1 mutants have underscored the importance of these proteins for the linkage of centrosomes and nuclei and for the maintenance of chromatin integrity. Taken together, we show that Dictyostelium amoebae, which provide a well-established model to study the basic aspects of chemotaxis, cell migration and development, are well suited for the investigation of the molecular and cell biological basis of developmental diseases such as lissencephaly.}, language = {en} } @article{MeyerPeterBatsiosetal.2017, author = {Meyer, Irene and Peter, Tatjana and Batsios, Petros and Kuhnert, Oliver and Krueger-Genge, Anne and Camurca, Carl and Gr{\"a}f, Ralph}, title = {CP39, CP75 and CP91 are major structural components of the Dictyostelium}, series = {European journal of cell biology}, volume = {96}, journal = {European journal of cell biology}, publisher = {Elsevier}, address = {Jena}, issn = {0171-9335}, doi = {10.1016/j.eicb.2017.01.004}, pages = {119 -- 130}, year = {2017}, abstract = {The acentriolar Dictyostelium centrosome is a nucleus-associated body consisting of a core structure with three plaque-like layers, which are surrounded by a microtubule-nucleating corona. The core duplicates once per cell cycle at the G2/M transition, whereby its central layer disappears and the two outer layers form the mitotic spindle poles. Through proteomic analysis of isolated centrosomes, we have identified CP39 and CP75, two essential components of the core structure. Both proteins can be assigned to the central core layer as their centrosomal presence is correlated to the disappearance and reappearance of the central core layer in the course of centrosome duplication. Both proteins contain domains with centrosome-binding activity in their N- and C-terminal halves, whereby the respective N-terminal half is required for cell cycle-dependent regulation. CP39 is capable of self-interaction and GFP-CP39 overexpression elicited supernumerary microtubule-organizing centers and pre-centrosomal cytosolic clusters. Underexpression stopped cell growth and reversed the MTOC amplification phenotype. In contrast, in case of CP75 underexpression of the protein by RNAi treatment elicited supernumerary MTOCs. In addition, CP75RNAi affects correct chromosome segregation and causes co-depletion of CP39 and CP91, another central core layer component. CP39 and CP75 interact with each other directly in a yeast two-hybrid assay. Furthermore, CP39, CP75 and CP91 mutually interact in a proximity-dependent biotin identification (BioID) assay. Our data indicate that these three proteins are all required for proper centrosome biogenesis and make up the major structural components of core structure's central layer.}, language = {en} } @article{MiticGrafeBatsiosetal.2022, author = {Mitic, Kristina and Grafe, Marianne and Batsios, Petros and Meyer, Irene}, title = {Partial Disassembly of the Nuclear Pore Complex Proteins during Semi-Closed Mitosis in Dictyostelium discoideum}, series = {Cells}, volume = {11}, journal = {Cells}, number = {3}, publisher = {MDPI}, address = {Basel}, issn = {2073-4409}, doi = {10.3390/cells11030407}, pages = {14}, year = {2022}, abstract = {Dictyostelium cells undergo a semi-closed mitosis, during which the nuclear envelope (NE) persists; however, free diffusion between the cytoplasm and the nucleus takes place. To permit the formation of the mitotic spindle, the nuclear envelope must be permeabilized in order to allow diffusion of tubulin dimers and spindle assembly factors into the nucleus. In Aspergillus, free diffusion of proteins between the cytoplasm and the nucleus is achieved by a partial disassembly of the nuclear pore complexes (NPCs) prior to spindle assembly. In order to determine whether this is also the case in Dictyostelium, we analysed components of the NPC by immunofluorescence microscopy and live cell imaging and studied their behaviour during interphase and mitosis. We observed that the NPCs are absent from the contact area of the nucleoli and that some nucleoporins also localize to the centrosome and the spindle poles. In addition, we could show that, during mitosis, the central FG protein NUP62, two inner ring components and Gle1 depart from the NPCs, while all other tested NUPs remained at the NE. This leads to the conclusion that indeed a partial disassembly of the NPCs takes place, which contributes to permeabilisation of the NE during semi-closed mitosis.}, language = {en} } @misc{MiticGrafeBatsiosetal.2022, author = {Mitic, Kristina and Grafe, Marianne and Batsios, Petros and Meyer, Irene}, title = {Partial Disassembly of the Nuclear Pore Complex Proteins during Semi-Closed Mitosis in Dictyostelium discoideum}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {3}, issn = {1866-8372}, doi = {10.25932/publishup-54534}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-545341}, pages = {16}, year = {2022}, abstract = {Dictyostelium cells undergo a semi-closed mitosis, during which the nuclear envelope (NE) persists; however, free diffusion between the cytoplasm and the nucleus takes place. To permit the formation of the mitotic spindle, the nuclear envelope must be permeabilized in order to allow diffusion of tubulin dimers and spindle assembly factors into the nucleus. In Aspergillus, free diffusion of proteins between the cytoplasm and the nucleus is achieved by a partial disassembly of the nuclear pore complexes (NPCs) prior to spindle assembly. In order to determine whether this is also the case in Dictyostelium, we analysed components of the NPC by immunofluorescence microscopy and live cell imaging and studied their behaviour during interphase and mitosis. We observed that the NPCs are absent from the contact area of the nucleoli and that some nucleoporins also localize to the centrosome and the spindle poles. In addition, we could show that, during mitosis, the central FG protein NUP62, two inner ring components and Gle1 depart from the NPCs, while all other tested NUPs remained at the NE. This leads to the conclusion that indeed a partial disassembly of the NPCs takes place, which contributes to permeabilisation of the NE during semi-closed mitosis.}, language = {en} } @phdthesis{Peter2016, author = {Peter, Tatjana}, title = {Molekulare Charakterisierung von CP75, einem neuen centrosomalen Protein in Dictyostelium discoideum}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-96472}, school = {Universit{\"a}t Potsdam}, pages = {III, 93}, year = {2016}, abstract = {Das Centrosom ist ein Zellkern-assoziiertes Organell, das nicht von einer Membran umschlossen ist. Es spielt eine wichtige Rolle in vielen Mikrotubuli- abhängigen Prozessen wie Organellenpositionierung, Zellpolarität oder die Organisation der mitotischen Spindel. Das Centrosom von Dictyostelium besteht aus einer dreischichtigen Core-Struktur umgeben von einer Corona, die Mikrotubuli-nukleierende Komplexe enthält. Die Verdoppelung des Centrosoms in Dictyostelium findet zu Beginn der Mitose statt. In der Prophase vergrößert sich die geschichtete Core-Struktur und die Corona löst sich auf. Anschließend trennen sich die beiden äußeren Lagen der Core-Struktur und bilden in der Metaphase die beiden Spindelpole, die in der Telophase zu zwei vollständigen Centrosomen heranreifen. Das durch eine Proteom-Analyse identifizierte Protein CP75 lokalisiert am Centrosom abhängig von den Mitosephasen. Es dissoziiert von der Core-Struktur in der Prometaphase und erscheint an den Spindelpolen in der Telophase wieder. Dieses Verhalten korreliert mit dem Verhalten der mittleren Lage der Core-Struktur in der Mitose, was darauf hinweist, dass CP75 eine Komponente dieser Schicht sein könnte. Die FRAP-Experimente am Interphase- Centrosom zeigen, dass GFP-CP75 dort nicht mobil ist. Das deutet darauf hin, dass das Protein wichtige Funktionen im Strukturerhalt der centrosomalen Core- Struktur {\"u}bernehmen könnte. Sowohl die C- als auch die N-terminale Domäne von CP75 enthalten centrosomale Targeting-Domäne. Als GFP-Fusionsproteine (GFP-CP75-N und -C) lokalisieren die beiden Fragmente am Centrosom in der Interphase. Während GFP-CP75-C in der Mitose am Centrosom verbleibt, verschwindet GFP-CP75-N in der Metaphase und kehrt erst in der späten Telophase zur{\"u}ck. GFP-CP75-C und GFP-CP75O/E kolokalisieren mit F-Aktin am Zellcortex, zeigen aber keine Interaktion mit Aktin mit der BioID-Methode. Die N-terminale Domäne von CP75 enthält eine potentielle Plk1- Phosphorylierungssequenz. Die Überexpression der nichtphosphorylierbaren Punktmutante (GFP-CP75-Plk-S143A) ruft verschiedene Phänotypen wie verlängerte oder {\"u}berzählige Centrosomen, vergrößerte Zellkerne und Anreicherung von detyrosinierten Mikrotubuli hervor. Die ähnlichen Phänotypen konnten auch bei GFP-CP75-N und CP75-RNAi beobachtet werden. Der Phänotyp der detyrosinierten Mikrotubuli bringt erstmals den Beweis daf{\"u}r, dass I in Dictyostelium posttranslationale Modifikation an Tubulinen stattfindet. Außerdem zeigten CP75-RNAi-Zellen Defekte in der Organisation der mitotischen Spindel. Mittels BioID-Methode konnten drei potentielle Interaktionspartner von CP75 identifiziert werden. Diese drei Proteine CP39, CP91 und Cep192 sind ebenfalls Bestandteile des Centrosoms.}, language = {de} } @article{PitzenAskarzadaGraefetal.2018, author = {Pitzen, Valentin and Askarzada, Sophie and Gr{\"a}f, Ralph and Meyer, Irene}, title = {CDK5RAP2 Is an Essential Scaffolding Protein of the Corona of the Dictyostelium Centrosome}, series = {Cells}, volume = {7}, journal = {Cells}, number = {4}, publisher = {MDPI}, address = {Basel}, issn = {2073-4409}, doi = {10.3390/cells7040032}, pages = {17}, year = {2018}, abstract = {Dictyostelium centrosomes consist of a nucleus-associated cylindrical, three-layered core structure surrounded by a corona consisting of microtubule-nucleation complexes embedded in a scaffold of large coiled-coil proteins. One of them is the conserved CDK5RAP2 protein. Here we focus on the role of Dictyostelium CDK5RAP2 for maintenance of centrosome integrity, its interaction partners and its dynamic behavior during interphase and mitosis. GFP-CDK5RAP2 is present at the centrosome during the entire cell cycle except from a short period during prophase, correlating with the normal dissociation of the corona at this stage. RNAi depletion of CDK5RAP2 results in complete disorganization of centrosomes and microtubules suggesting that CDK5RAP2 is required for organization of the corona and its association to the core structure. This is in line with the observation that overexpressed GFP-CDK5RAP2 elicited supernumerary cytosolic MTOCs. The phenotype of CDK5RAP2 depletion was very reminiscent of that observed upon depletion of CP148, another scaffolding protein of the corona. BioID interaction assays revealed an interaction of CDK5RAP2 not only with the corona markers CP148, gamma-tubulin, and CP248, but also with the core components Cep192, CP75, and CP91. Furthermore, protein localization studies in both depletion strains revealed that CP148 and CDK5RAP2 cooperate in corona organization.}, language = {en} }