@article{BartholdTurnerElsenbeeretal.2017, author = {Barthold, Frauke Katrin and Turner, Benjamin L. and Elsenbeer, Helmut and Zimmermann, Alexander}, title = {A hydrochemical approach to quantify the role of return flow in a surface flow-dominated catchment}, series = {Hydrological processes}, volume = {31}, journal = {Hydrological processes}, number = {5}, publisher = {Wiley}, address = {Hoboken}, issn = {0885-6087}, doi = {10.1002/hyp.11083}, pages = {1018 -- 1033}, year = {2017}, abstract = {Stormflow generation in headwater catchments dominated by subsurface flow has been studied extensively, yet catchments dominated by surface flow have received less attention. We addressed this by testing whether stormflow chemistry is controlled by either (a) the event-water signature of overland flow, or (b) the pre-event water signature of return flow. We used a high-resolution hydrochemical data set of stormflow and end-members of multiple storms in an end-member mixing analysis to determine the number of end-members needed to explain stormflow, characterize and identify potential end-members, calculate their contributions to stormflow, and develop a conceptual model of stormflow. The arrangement and relative positioning of end-members in stormflow mixing space suggest that saturation excess overland flow (26-48\%) and return flow from two different subsurface storage pools (17-53\%) are both similarly important for stormflow. These results suggest that pipes and fractures are important flow paths to rapidly release stored water and highlight the value of within-event resolution hydrochemical data to assess the full range and dynamics of flow paths.}, language = {en} } @article{ZimmermannZeheHartmannetal.2008, author = {Zimmermann, Beate and Zehe, Erwin and Hartmann, N. K. and Elsenbeer, Helmut}, title = {Analyzing spatial data : an assessment of assumptions, new methods, and uncertainty using soil hydraulic data}, issn = {0043-1397}, year = {2008}, language = {en} } @article{SchmidtZimmermannElsenbeer2014, author = {Schmidt, Lena Katharina and Zimmermann, Alexander and Elsenbeer, Helmut}, title = {Ant mounds as a source of sediment in a tropical rainforest?}, series = {Hydrological processes}, volume = {28}, journal = {Hydrological processes}, number = {13}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {0885-6087}, doi = {10.1002/hyp.10222}, pages = {4156 -- 4160}, year = {2014}, abstract = {In Lutzito catchment on Barro Colorado Island, Panama, extraordinarily high suspended-sediment yields of 1-2Mgha-1year-1 were generated despite the dense forest cover coinciding with erosion-resistant soils. We hypothesized that ant mounding activity is an important zoogeomorphological mechanism in this area, providing relevant quantities of easily transportable material at the soil surface. To test this hypothesis, all ant mound material was collected collected for dry mass determination from thirty 4m2 plots installed in the study area every 1-3days during the 39-day sampling period. Additionally, three ground-nesting ant species responsible for mounds in the study area, Ectatomma ruidum, Trachymyrmex cornetzi and Strumigenys marginiventris, were identified. On the basis of the total of 1.38kg of material collected in the wet season of 2011, the estimate for the whole 8months wet season amounts to 725kgha-1. As this value is in the same order of magnitude as sediment output, it shows that ants may act as important ecosystem engineers and contribute to sediment production here by providing large quantities of fine-grained, readily erodible material at the soil surface for subsequent transport to the streambed. Copyright (c) 2014 John Wiley \& Sons, Ltd.}, language = {en} } @article{ZimmermannPapritzElsenbeer2010, author = {Zimmermann, Beate and Papritz, Andreas and Elsenbeer, Helmut}, title = {Asymmetric response to disturbance and recovery : Changes of soil permeability under forest-pasture-forest transitions}, issn = {0016-7061}, doi = {10.1016/j.geoderma.2010.07.013}, year = {2010}, abstract = {In the humid tropics, continuing high deforestation rates are seen alongside an increasing expansion of secondary forests. In order to understand and model the consequences of these dynamic land-use changes for regional water cycles, the response of soil hydraulic properties to forest disturbance and recovery has to be quantified.At a site in the Brazilian Amazonia, we annually monitored soil infiltrability and saturated hydraulic conductivity (K-s) at 12.5, 20 cm, and 50 cm soil depth after manual forest conversion to pasture (year zero to four after pasture establishment), and during secondary succession after pasture abandonment (year zero to seven after pasture abandonment). We evaluated the hydrological consequences of the detected changes by comparing the soil hydraulic properties with site-specific rainfall intensities and hydrometric observations. Within one year after grazing started, infiltrability and K-s at 12.5 and 20 cm depth decreased by up to one order of magnitude to levels which are typical for 20-year-old pasture. In the three subsequent monitoring years, infiltrability and K-s remained stable. Land use did not impact on subsoil permeability. Whereas infiltrability values are large enough to allow all rainwater to infiltrate even after the conversion, the sudden decline of near-surface K-s is of hydrological relevance as perched water tables and overland flow occur more often on pastures than in forests at our study site. After pasture abandonment and during secondary succession, seven years of recovery did not suffice to significantly increase infiltrability and K-s at 12.5 depth although a slight recovery is obvious. At 20 cm soil depth, we detected a positive linear increase within the seven-year time frame but annual means did not differ significantly. Although more than a doubling of infiltrability and K-s is still required to achieve pre-disturbance levels, which will presumably take more than a decade, the observed slight increases of K-s might already decrease the probability of perched water table generation and overland flow development well before complete recovery.}, language = {en} } @article{VorpahlDislichElsenbeeretal.2013, author = {Vorpahl, Peter and Dislich, Claudia and Elsenbeer, Helmut and M{\"a}rker, Michael and Schr{\"o}der-Esselbach, Boris}, title = {Biotic controls on shallow translational landslides}, series = {Earth surface processes and landforms : the journal of the British Geomorphological Research Group}, volume = {38}, journal = {Earth surface processes and landforms : the journal of the British Geomorphological Research Group}, number = {2}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {0197-9337}, doi = {10.1002/esp.3320}, pages = {198 -- 212}, year = {2013}, abstract = {In undisturbed tropical montane rainforests massive organic layers accommodate the majority of roots and only a small fraction of roots penetrate the mineral soil. We investigated the contribution of vegetation to slope stability in such environments by modifying a standard model for slope stability to include an organic layer with distinct mechanical properties. The importance of individual model parameters was evaluated using detailed measurements of soil and vegetation properties to reproduce the observed depth of 11 shallow landslides in the Andes of southern Ecuador. By distinguishing mineral soil, organic layer and above-ground biomass, it is shown that in this environment vegetation provides a destabilizing effect mainly due to its contribution to the mass of the organic layer (up to 973 t ha-1 under wet conditions). Sensitivity analysis shows that the destabilizing effect of the mass of soil and vegetation can only be effective on slopes steeper than 37.9 degrees. This situation applies to 36\% of the study area. Thus, on the steep slopes of this megadiverse ecosystem, the mass of the growing forest promotes landsliding, which in turn promotes a new cycle of succession. This feedback mechanism is worth consideration in further investigations of the impact of landslides on plant diversity in similar environments.}, language = {en} } @article{ZimmermannZimmermannTurneretal.2014, author = {Zimmermann, Beate and Zimmermann, Alexander and Turner, Benjamin L. and Francke, Till and Elsenbeer, Helmut}, title = {Connectivity of overland flow by drainage network expansion in a rain forest catchment}, series = {Water resources research}, volume = {50}, journal = {Water resources research}, number = {2}, publisher = {American Geophysical Union}, address = {Washington}, issn = {0043-1397}, doi = {10.1002/2012WR012660}, pages = {1457 -- 1473}, year = {2014}, abstract = {Soils in various places of the Panama Canal Watershed feature a low saturated hydraulic conductivity (K-s) at shallow depth, which promotes overland-flow generation and associated flashy catchment responses. In undisturbed forests of these areas, overland flow is concentrated in flow lines that extend the channel network and provide hydrological connectivity between hillslopes and streams. To understand the dynamics of overland-flow connectivity, as well as the impact of connectivity on catchment response, we studied an undisturbed headwater catchment by monitoring overland-flow occurrence in all flow lines and discharge, suspended sediment, and total phosphorus at the catchment outlet. We find that connectivity is strongly influenced by seasonal variation in antecedent wetness and can develop even under light rainfall conditions. Connectivity increased rapidly as rainfall frequency increased, eventually leading to full connectivity and surficial drainage of entire hillslopes. Connectivity was nonlinearly related to catchment response. However, additional information on factors such as overland-flow volume would be required to constrain relationships between connectivity, stormflow, and the export of suspended sediment and phosphorus. The effort to monitor those factors would be substantial, so we advocate applying the established links between rain event characteristics, drainage network expansion by flow lines, and catchment response for predictive modeling and catchment classification in forests of the Panama Canal Watershed and in similar regions elsewhere.}, language = {en} } @article{HayhoeNeillPorderetal.2011, author = {Hayhoe, Shelby J. and Neill, Christopher and Porder, Stephen and McHorney, Richard and Lefebvre, Paul and Coe, Michael T. and Elsenbeer, Helmut and Krusche, Alex V.}, title = {Conversion to soy on the Amazonian agricultural frontier increases streamflow without affecting stormflow dynamics}, series = {Global change biology}, volume = {17}, journal = {Global change biology}, number = {5}, publisher = {Wiley-Blackwell}, address = {Malden}, issn = {1354-1013}, doi = {10.1111/j.1365-2486.2011.02392.x}, pages = {1821 -- 1833}, year = {2011}, abstract = {Large-scale soy agriculture in the southern Brazilian Amazon now rivals deforestation for pasture as the region's predominant form of land use change. Such landscape-level change can have substantial consequences for local and regional hydrology, but these effects remain relatively unstudied in this ecologically and economically important region. We examined how the conversion to soy agriculture influences water balances and stormflows using stream discharge (water yields) and the timing of discharge (stream hydrographs) in small (2.5-13.5 km2) forested and soy headwater watersheds in the Upper Xingu Watershed in the state of Mato Grosso, Brazil. We monitored water yield for 1 year in three forested and four soy watersheds. Mean daily water yields were approximately four times higher in soy than forested watersheds, and soy watersheds showed greater seasonal variability in discharge. The contribution of stormflows to annual streamflow in all streams was low (< 13\% of annual streamflow), and the contribution of stormflow to streamflow did not differ between land uses. If the increases in water yield observed in this study are typical, landscape-scale conversion to soy substantially alters water-balance, potentially altering the regional hydrology over large areas of the southern Amazon.}, language = {en} } @article{BaeseElsenbeerNeilletal.2012, author = {B{\"a}se, Frank and Elsenbeer, Helmut and Neill, Christopher and Krusche, Alex V.}, title = {Differences in throughfall and net precipitation between soybean and transitional tropical forest in the southern Amazon, Brazil}, series = {Agriculture, ecosystems \& environment : an international journal for scientific research on the relationship of agriculture and food production to the biosphere}, volume = {159}, journal = {Agriculture, ecosystems \& environment : an international journal for scientific research on the relationship of agriculture and food production to the biosphere}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0167-8809}, doi = {10.1016/j.agee.2012.06.013}, pages = {19 -- 28}, year = {2012}, abstract = {The expansion of soybean cultivation into the Amazon in Brazil has potential hydrological effects at local to regional scales. To determine the impacts of soybean agriculture on hydrology, a comparison of net precipitation (throughfall, stemflow) in undisturbed tropical forest and soybean fields on the southern edge of the Amazon Basin in the state of Mato Grosso is needed. This study measured throughfall with troughs and stemflow with collar collectors during two rainy seasons. The results showed that in forest 91.6\% of rainfall was collected as throughfall and 0.3\% as stemflow, while in soybean fields with two-month old plants, 46.2\% of rainfall was collected as throughfall and 9.0\% as stemflow. Hence, interception of precipitation in soybean fields was far greater than in intact forests. Differences in throughfall, stemflow and net precipitation were found to be mainly associated with differences in plant structure and stem density in transitional forest and soybean cropland. Because rainfall interception in soybean fields is higher than previously believed and because both the area of cropland and the frequency of crop cycles (double cropping) are increasing rapidly, interception needs to be reconsidered in regional water balance models when consequences of land cover changes are analyzed in the Amazon soybean frontier region. Based on the continued expansion of soybean fields across the landscape and the finding that net precipitation is lower in soy agriculture, a reduction in water availability in the long term can be assumed.}, language = {en} } @article{GermerZimmermannNeilletal.2012, author = {Germer, Sonja and Zimmermann, Alexander and Neill, Christopher and Krusche, Alex V. and Elsenbeer, Helmut}, title = {Disproportionate single-species contribution to canopy-soil nutrient flux in an Amazonian rainforest}, series = {Forest ecology and management}, volume = {267}, journal = {Forest ecology and management}, number = {2}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0378-1127}, doi = {10.1016/j.foreco.2011.11.041}, pages = {40 -- 49}, year = {2012}, abstract = {Rainfall, throughfall and stemflow were monitored on an event basis in an undisturbed open tropical rainforest with a large number of palm trees located in the southwestern Amazon basin of Brazil. Stemflow samples were collected from 24 trees with a diameter at breast height (DBH) > 5 cm, as well as eight young and four full-grown babassu palms (Attalea speciosa Mart.) for 5 weeks during the peak of the wet season. We calculated rainfall, throughfall and stemflow concentrations and fluxes of Na+, K+, Ca2+, Mg2+,, Cl-, SO42-, NO3- and H+ and stemflow volume-weighted mean concentrations and fluxes for three size classes of broadleaf trees and three size classes of palms. The concentrations of most solutes were higher in stemflow than in rainfall and increased with increasing tree and palm size. Concentration enrichments from rainfall to stemflow and throughfall were particularly high (81-fold) for NO3-. Stemflow fluxes of NO3- and H+ exceeded throughfall fluxes but stemflow fluxes of other solutes were less than throughfall fluxes. Stemflow solute fluxes to the forest soil were dominated by fluxes on babassu palms, which represented only 4\% of total stem number and 10\% of total basal area. For NO3-, stemflow contributed 51\% of the total mass of nitrogen delivered to the forest floor (stemflow + throughfall) and represented more than a 2000-fold increase in NO3- flux compared what would have been delivered by rainfall alone on the equivalent area. Because these highly localized fluxes of both water and NO3- persist in time and space, they have the potential to affect patterns of soil moisture, microbial populations and other features of soil biogeochemistry conducive to the creation of hotspots for nitrogen leaching and denitrification, which could amount to an important fraction of total ecosystem fluxes. Because these hotspots occur over very small areas, they have likely gone undetected in previous studies and need to be considered as an important feature of the biogeochemistry of palm-rich tropical forest.}, language = {en} } @article{HasslerLarkMilneetal.2011, author = {Haßler, Sibylle Kathrin and Lark, Richard M. and Milne, A. E. and Elsenbeer, Helmut}, title = {Exploring the variation in soil saturated hydraulic conductivity under a tropical rainforest using the wavelet transform}, series = {European journal of soil science}, volume = {62}, journal = {European journal of soil science}, number = {6}, publisher = {Wiley-Blackwell}, address = {Malden}, issn = {1351-0754}, doi = {10.1111/j.1365-2389.2011.01400.x}, pages = {891 -- 901}, year = {2011}, abstract = {Saturated hydraulic conductivity (Ks) of the soil is a key variable in the water cycle. For the humid tropics, information about spatial scales of Ks and their relation to soil types deduced from soil map units is of interest, as soil maps are often the only available data source for modelling. We examined the influence of soil map units on the mean and variation in Ks along a transect in a tropical rainforest using undisturbed soil cores at 06 and 612 cm depth. The Ks means were estimated with a linear mixed model fitted by residual maximum likelihood (REML), and the spatial variation in Ks was investigated with the maximum overlap discrete wavelet packet transform (MODWPT). The mean values of Ks did not differ between soil map units. The best wavelet packet basis for Ks at 06 cm showed stationarity at high frequencies, suggesting uniform small-scale influences such as bioturbation. There were substantial contributions to wavelet packet variance over the range of spatial frequencies and a pronounced low frequency peak corresponding approximately to the scale of soil map units. However, in the relevant frequency intervals no significant changes in wavelet packet variance were detected. We conclude that near-surface Ks is not dominated by static, soil-inherent properties for the examined range of soils. Several indicators from the wavelet packet analysis hint at the more dominant dynamic influence of biotic processes, which should be kept in mind when modelling soil hydraulic properties on the basis of soil maps.}, language = {en} } @article{ZimmermannFranckeElsenbeer2012, author = {Zimmermann, Alexander and Francke, Till and Elsenbeer, Helmut}, title = {Forests and erosion: Insights from a study of suspended-sediment dynamics in an overland flow-prone rainforest catchment}, series = {Journal of hydrology}, volume = {428}, journal = {Journal of hydrology}, number = {7}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0022-1694}, doi = {10.1016/j.jhydrol.2012.01.039}, pages = {170 -- 181}, year = {2012}, abstract = {Forests seem to represent low-erosion systems, according to most, but not all, studies of suspended-sediment yield. We surmised that this impression reflects an accidental bias in the selection of monitoring sites towards those with prevailing vertical hydrological flowpaths, rather than a tight causal link between vegetation cover and erosion alone. To evaluate this conjecture, we monitored, over a 2-year period, a 3.3 ha old-growth rainforest catchment prone to frequent and widespread overland flow. We sampled stream flow at two and overland flow at three sites in a nested arrangement on a within-event basis, and monitored the spatial and temporal frequency of overland flow. Suspended-sediment concentrations were modeled with Random Forest and Quantile Regression Forest to be able to estimate the annual yields for the 2 years, which amounted to 1 t ha(-1) and 2 t ha(-1) in a year with below-average and with average precipitation, respectively. These estimates place our monitoring site near the high end of reported suspended-sediment yields and lend credence to the notion that low yields reflect primarily the dominance of vertical flowpaths and not necessarily and exclusively the kind of vegetative cover. Undisturbed forest and surface erosion are certainly no contradiction in terms even in the absence of mass movements.}, language = {en} } @article{MessmerElsenbeerWilcke2014, author = {Messmer, Tobias and Elsenbeer, Helmut and Wilcke, Wolfgang}, title = {High exchangeable calcium concentrations in soils on Barro Colorado Island, Panama}, series = {Geoderma : an international journal of soil science}, volume = {217}, journal = {Geoderma : an international journal of soil science}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0016-7061}, doi = {10.1016/j.geoderma.2013.10.021}, pages = {212 -- 224}, year = {2014}, abstract = {The soils on four lithologies (basaltic conglomerates, Bohio; Andesite; volcanoclastic sediments with basaltic agglomerates, Caimito volcanic; foraminiferal limestone, Caimito marine) on Barro Colorado Island (BCI have high exchangeable Ca concentrations and cation-exchange capacities (CEC) compared to other tropical soils on similar parent material. In the 0-10 cm layer of 24 mineral soils, pH values ranged from 5.7 (Caimito volcanic and Andesite) to 6.5 (Caimito marine), concentrations of exchangeable Ca from 134 mmol(c) kg(-1) (Caimito volcanic) to 585 mmolc kg-1 (Caimito marine), and cation exchange capacities from 317 mmol(c) kg(-1) (Caimito volcanic) to 933 mmol(c) kg(-1) (Caimito marine). X-ray diffractometry of the fraction <2 mu m revealed that smectites dominated the clay mineral assemblage in soil except on Caimito volcanic, where kaolinite was the dominant clay mineral. Exchangeable Ca concentrations decreased with increasing soil depth except on Caimito marine. The weathering indices Chemical Index of Alteration (CIA), Plagioclase Index of Alteration (PIA) and Weathering Index of Parker (WIP) determined for five soils on all geological formations, suggested that in contrast to expectation the topsoil (0-10 cm) appeared to be the least and the subsoil (50-70 cm) and saprolite (isomorphically weathered rock in the soil matrix) the most weathered. Additionally, the weathering indices indicated depletion of base cations and enrichment of Al-(hydr)oxides throughout the soil profile. Tree species did not have an effect on soil properties. Impeded leaching and the related occurrence of overland flow seem to be important in determining clay mineralogy. Our results suggest that (i) edaphic conditions favor the formation of smectites on most lithologies resulting in high CEC and thus high retention capacity for Ca and (ii) that there is an external source such as dust or sea spray deposition supplying Ca to the soils.}, language = {en} } @article{VorpahlElsenbeerMaerkeretal.2012, author = {Vorpahl, Peter and Elsenbeer, Helmut and M{\"a}rker, Michael and Schr{\"o}der-Esselbach, Boris}, title = {How can statistical models help to determine driving factors of landslides?}, series = {Ecological modelling : international journal on ecological modelling and engineering and systems ecolog}, volume = {239}, journal = {Ecological modelling : international journal on ecological modelling and engineering and systems ecolog}, number = {7}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0304-3800}, doi = {10.1016/j.ecolmodel.2011.12.007}, pages = {27 -- 39}, year = {2012}, abstract = {Landslides are a hazard for humans and artificial structures. From an ecological point of view, they represent an important ecosystem disturbance, especially in tropical montane forests. Here, shallow translational landslides are a frequent natural phenomenon and one local determinant of high levels of biodiversity. In this paper, we apply weighted ensembles of advanced phenomenological models from statistics and machine learning to analyze the driving factors of natural landslides in a tropical montane forest in South Ecuador. We exclusively interpret terrain attributes, derived from a digital elevation model, as proxies to several driving factors of landslides and use them as predictors in our models which are trained on a set of five historical landslide inventories. We check the model generality by transferring them in time and use three common performance criteria (i.e. AUC, explained deviance and slope of model calibration curve) to, on the one hand, compare several state-of-the-art model approaches and on the other hand, to create weighted model ensembles. Our results suggest that it is important to consider more than one single performance criterion. Approaching our main question, we compare responses of weighted model ensembles that were trained on distinct functional units of landslides (i.e. initiation, transport and deposition zones). This way, we are able to show that it is quite possible to deduce driving factors of landslides, if the consistency between the training data and the processes is maintained. Opening the 'black box' of statistical models by interpreting univariate model response curves and relative importance of single predictors regarding their plausibility, we provide a means to verify this consistency. With the exception of classification tree analysis, all techniques performed comparably well in our case study while being outperformed by weighted model ensembles. Univariate response curves of models trained on distinct functional units of landslides exposed different shapes following our expectations. Our results indicate the occurrence of landslides to be mainly controlled by factors related to the general position along a slope (i.e. ridge, open slope or valley) while landslide initiation seems to be favored by small scale convexities on otherwise plain open slopes.}, language = {en} } @article{NeillElsenbeerKruscheetal.2006, author = {Neill, Christopher and Elsenbeer, Helmut and Krusche, Alex V. and Lehmann, Johannes and Markewitz, Daniel and Figueiredo, Ricardo de O.}, title = {Hydrological and biogeochemical processes in a changing Amazon : results from small watershed studies and the large-scale biosphere-atmosphere experiment}, doi = {10.1002/Hyp.6210}, year = {2006}, abstract = {The Amazon Basin is the world's largest tropical forest region and one where rapid human changes to land cover have the potential to cause significant changes to hydrological and biogeochemical processes. The Large-Scale Biosphere-Atmosphere Experiment in Amazonia (LBA) is a multidisciplinary, multinational research program led by Brazil. The goal of LBA is to understand how the Amazon Basin functions as a regional entity in the earth system and how these functions are changing as a result of ongoing human activity. This compilation of nine papers focuses on a central LBA question in the area of nutrient dynamics and surface water chemistry-how do changes in land use alter fluxes of dissolved and particulate materials from uplands across riparian zones and down the channels of river corridors? These papers cover work conducted in small watersheds on a wide range of topics within the spirit and geographical focus area of LBA: water balance and runoff generation, nutrient transformations in riparian zones and stream channels, carbon fluxes in water moving from land to water and the influence of soils on flowpath structure and stream chemistry. Important new insights can be gained from these and other studies. Forest clearing for pastures results in a decrease in soil hydraulic conductivity that forces water into surficial flowpaths throughout most of the rainy season across wide regions of the Amazon. Riparian zones along small forest streams appear to be very effective in removing nitrate arriving from the uplands, while forest streams take up nitrate at very low rates, allowing them to travel downstream for long distances. Although substantial, the contribution of dissolved organic C (DOC) to the carbon flux from forests to streams appears to be lower than the flux of dissolved inorganic C that is subsequently outgassed as CO2. Remaining key challenges within LBA will be to synthesize existing data sets on river networks, soils, climate, land use and planned infrastructure for the Amazon to develop models capable of predicting hydrologic and biogeochemical fluxes at a variety of scales relevant to the development of strategies for sustainable management of the Amazon's remarkable forest, soil and freshwater resources.}, language = {en} } @article{GermerNeillVetteretal.2009, author = {Germer, Sonja and Neill, Christopher and Vetter, Tobias and Chaves, Joaqu{\´i}n E. and Krusche, Alex V. and Elsenbeer, Helmut}, title = {Implications of long-term land-use change for the hydrology and solute budgets of small catchments in Amazonia}, issn = {0022-1694}, doi = {10.1016/j.jhydrol.2008.11.013}, year = {2009}, abstract = {The replacement of undisturbed tropical forest with cattle pasture has the potential to greatly modify the hydrology of small watersheds and the fluxes of solutes. We examined the fluxes of water, Cl-, NO3--N: SO42---S, NH4+-N, Na+, K+, Mg2+ and Ca2+ in different flow paths in similar to 1 ha catchments of undisturbed open tropical rainforest and a 20 year-old pasture established from forest in the southwestern Brazilian Amazon state of Rondonia. Storm flow discharge was 18\% of incident rainfall in pasture, but only 1\% in forest. Quickflow predominated over baseflow in both catchments and in both wet and dry seasons. In the pasture, groundwater and quickflow were important flow paths for the export of all solutes. In the forest, quickflow was important for NO3--N export, but all other solutes were exported primarily by groundwater outflow. Both catchments were sinks for SO42--S and Ca2+, and sources of Na+. The pasture catchment also lost K+ and Mg2+ because of higher overland flow frequency and volume and to cattle excrement. These results show that forest clearing dramatically influences small watershed hydrology by increasing quickflow and water export to streams. They also indicate that tropical forest watersheds are highly conservative for most solutes but that pastures continue to lose important cations even decades after deforestation and pasture establishment.}, language = {en} } @article{GermerNeillKruscheetal.2010, author = {Germer, Sonja and Neill, Christopher and Krusche, Alex V. and Elsenbeer, Helmut}, title = {Influence of land-use change on near-surface hydrological processes : undisturbed forest to pasture}, issn = {0022-1694}, doi = {10.1016/j.jhydrol.2009.11.022}, year = {2010}, abstract = {Soil compaction that follows the clearing of tropical forest for cattle pasture is associated with lower soil hydraulic conductivity and increased frequency and volume of overland flow. We investigated the frequency of perched water tables, overland flow and stormflow in an Amazon forest and in an adjacent 25-year-old pasture cleared from the same forest. We compared the results with the frequencies of these phenomena estimated from comparisons of rainfall intensity and soil hydraulic conductivity. The frequency of perched water tables based on rainfall intensity and soil hydraulic conductivity was expected to double in pasture compared with forest. This corresponded closely with an approximate doubling of the frequency of stormflow and overland flow in pasture. In contrast, the stormflow volume in pasture increased 17-fold. This disproportional increase of stormflow resulted from overland flow generation over large areas of pasture, while overland flow generation in the forest was spatially limited and was observed only very near the stream channel. In both catchments, stormflow was generated by saturation excess because of perched water tables and near-surface groundwater levels. Stormflow was occasionally generated in the forest by rapid return flow from macropores, while slow return flow from a continuous perched water table was more common in the pasture. These results suggest that deforestation for pasture alters fundamental mechanisms of stormflow generation and may increase runoff volumes over wide regions of Amazonia.}, language = {en} } @article{ChavesNeillGermeretal.2008, author = {Chaves, Joaqu{\´i}n E. and Neill, Christopher and Germer, Sonja and Neto, S{\´e}rgio Gouveia and Krusche, Alex V. and Elsenbeer, Helmut}, title = {Land management impacts on runoff sources in small amazon watersheds}, issn = {0885-6087}, doi = {10.1002/hyp.6803}, year = {2008}, language = {en} } @article{GodseyElsenbeerStallard2004, author = {Godsey, S. and Elsenbeer, Helmut and Stallard, R. F.}, title = {Overland flow generation in two lithologically distinct rainforest catchments}, issn = {0022-1694}, year = {2004}, abstract = {Streams on uniformly rainforest-covered, but lithologically very diverse Barro Colorado Island in central Panamd show remarkable differences in their runoff response to rainfall. This lithological diversity is reflected in equally diverse soilscapes, and our objective was to test the hypothesis that contrasting runoff responses derive from soilscape features that control the generation of overland flow. We determined the soil saturated hydraulic conductivity (K-s) of two neighboring, but hydrologically contrasting catchments (Lutz Creek with a flashy and Conrad Trail with a delayed response to rainfall), and quantified the spatial and temporal frequency of overland flow occurrence. The median K-s values at a depth of 12.5 cm are large enough to rule out Hortonian overland flow, but a marked decrease in K-s in Lutz Creek catchment at 30 cm suggests the formation of a perched water table and the generation saturation overland flow; the decrease in K-s in the Conrad Trail catchment is more gradual, and a perched water table is expected to form only at depths below 50 cm. In Lutz Creek, overland flow was generated frequently in time and space and regardless of topographic position, including near the interfluve, with very low thresholds of storm magnitude, duration, intensity and antecedent wetness, whereas in Conrad Trail, overland flow was generated much less frequently and then only locally. We conclude that soilscape features and microtopography are important controls of overland flow generation in these catchments. Our results contribute to the growing evidence that overland flow and forests are not a priori a contradiction in terms. (C) 2004 Elsevier B.V. All rights reserved}, language = {en} } @article{ZeheElsenbeerLindenmaieretal.2007, author = {Zehe, Erwin and Elsenbeer, Helmut and Lindenmaier, Falk and Schulz, K. and Bl{\"o}schl, G{\"u}nter}, title = {Patterns of predictability in hydrological threshold systems}, issn = {0043-1397}, doi = {10.1029/2006wr005589}, year = {2007}, abstract = {[1] Observations of hydrological response often exhibit considerable scatter that is difficult to interpret. In this paper, we examine runoff production of 53 sprinkling experiments on the water-repellent soils in the southern Alps of Switzerland; simulated plot scale tracer transport in the macroporous soils at the Weiherbach site, Germany; and runoff generation data from the 2.3-km(2) Tannhausen catchment, Germany, that has cracking soils. The response at the three sites is highly dependent on the initial soil moisture state as a result of the threshold dynamics of the systems. A simple statistical model of threshold behavior is proposed to help interpret the scatter in the observations. Specifically, the model portrays how the inherent macrostate uncertainty of initial soil moisture translates into the scatter of the observed system response. The statistical model is then used to explore the asymptotic pattern of predictability when increasing the number of observations, which is normally not possible in a field study. Although the physical and chemical mechanisms of the processes at the three sites are different, the predictability patterns are remarkably similar. Predictability is smallest when the system state is close to the threshold and increases as the system state moves away from it. There is inherent uncertainty in the response data that is not measurement error but is related to the observability of the initial conditions.}, language = {en} } @article{DieterElsenbeerTurner2010, author = {Dieter, Daniela and Elsenbeer, Helmut and Turner, Benjamin L.}, title = {Phosphorus fractionation in lowland tropical rainforest soils in central Panama}, issn = {0341-8162}, doi = {10.1016/j.catena.2010.05.010}, year = {2010}, abstract = {Phosphorus availability is commonly assumed to limit productivity in lowland tropical rainforests, yet there is relatively little information on the chemical forms of soil phosphorus in such ecosystems. We used the Hedley sequential fractionation scheme to assess phosphorus chemistry in five soils supporting tropical rainforest on Barro Colorado Island, Republic of Panama. The soils represented a range of orders (Inceptisols, Alfisols, and Oxisols) formed on contrasting geological substrates and topography, but under uniform climate and vegetation. Total phosphorus in surface horizons ranged between 315 and 1114 mg P kg(-1), being lowest on a soil derived from marine sediments and highest on soils derived from andesite. The majority of the phosphorus occurred in recalcitrant forms, although between 14\% and 39\% occurred as organic phosphorus. Readily-available phosphate, as extracted by anion-exchange membranes, occurred in small concentrations (4-13 mg P kg(-1)), although labile phosphorus, defined as phosphate extracted by anion-exchange membrane plus inorganic and organic phosphorus extracted by 0.5 M NaHCO3, accounted for between 4.7\% and 11.4\% of the total soil phosphorus. Our results indicate a strong control of geology and topography on soil phosphorus in tropical rainforests, which may have important implications for understanding the diversity and distribution of plant species in such ecosystems. Further, some of the most common soils on Barro Colorado Island, including those on the 50 ha forest dynamics plot, are rich in phosphorus despite their relatively advanced stage of pedogenesis.}, language = {en} }