@article{KoussoroplisWacker2016, author = {Koussoroplis, Apostolos-Manuel and Wacker, Alexander}, title = {Covariance modulates the effect of joint temperature and food variance on ectotherm life-history traits}, series = {Ecology letters}, volume = {19}, journal = {Ecology letters}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {1461-023X}, doi = {10.1111/ele.12546}, pages = {143 -- 152}, year = {2016}, abstract = {Understanding animal performance in heterogeneous or variable environments is a central question in ecology. We combine modelling and experiments to test how temperature and food availability variance jointly affect life-history traits of ectotherms. The model predicts that as mean temperatures move away from the ectotherm's thermal optimum, the effect size of joint thermal and food variance should become increasingly sensitive to their covariance. Below the thermal optimum, performance should be positively correlated with food-temperature covariance and the opposite is predicted above it. At lower temperatures, covariance should determine whether food and temperature variance increases or decreases performance compared to constant conditions. Somewhat stronger than predicted, the covariance effect below the thermal optimum was confirmed experimentally on an aquatic ectotherm (Daphnia magna) exposed to diurnal food and temperature variance with different amounts of covariance. Our findings have important implications for understanding ectotherm responses to climate-driven alterations of thermal mean and variance.}, language = {en} } @article{KoussoroplisPincebourdeWacker2017, author = {Koussoroplis, Apostolos-Manuel and Pincebourde, Sylvain and Wacker, Alexander}, title = {Understanding and predicting physiological performance of organisms in fluctuating and multifactorial environments}, series = {Ecological monographs : a publication of the Ecological Society of America.}, volume = {87}, journal = {Ecological monographs : a publication of the Ecological Society of America.}, publisher = {Wiley}, address = {Hoboken}, issn = {0012-9615}, doi = {10.1002/ecm.1247}, pages = {178 -- 197}, year = {2017}, abstract = {Understanding how variance in environmental factors affects physiological performance, population growth, and persistence is central in ecology. Despite recent interest in the effects of variance in single biological drivers, such as temperature, we have lacked a comprehensive framework for predicting how the variances and covariances between multiple environmental factors will affect physiological rates. Here, we integrate current theory on variance effects with co-limitation theory into a single unified conceptual framework that has general applicability. We show how the framework can be applied (1) to generate mathematically tractable predictions of the physiological effects of multiple fluctuating co-limiting factors, (2) to understand how each co-limiting factor contributes to these effects, and (3) to detect mechanisms such as acclimation or physiological stress when they are at play. We show that the statistical covariance of co-limiting factors, which has not been considered before, can be a strong driver of physiological performance in various ecological contexts. Our framework can provide powerful insights on how the global change-induced shifts in multiple environmental factors affect the physiological performance of organisms.}, language = {en} }