@article{ScherlerBookhagenStrecker2011, author = {Scherler, Dirk and Bookhagen, Bodo and Strecker, Manfred}, title = {Hillslope-glacier coupling the interplay of topography and glacial dynamics in High Asia}, series = {Journal of geophysical research : Earth surface}, volume = {116}, journal = {Journal of geophysical research : Earth surface}, publisher = {American Geophysical Union}, address = {Washington}, issn = {0148-0227}, doi = {10.1029/2010JF001751}, pages = {21}, year = {2011}, abstract = {High Asian glacial landscapes have large variations in topographic relief and the size and steepness of snow accumulation areas. Associated differences in glacial cover and dynamics allow a first-order determination of the dominant processes shaping these landscapes. Here we provide a regional synthesis of the topography and flow characteristics of 287 glaciers across High Asia using digital elevation analysis and remotely sensed glacier surface velocities. Glaciers situated in low-relief areas on the Tibetan Plateau are mainly nourished by direct snowfall, have little or no debris cover, and have a relatively symmetrical distribution of velocities along their length. In contrast, avalanche-fed glaciers with steep accumulation areas, which occur at the deeply incised edges of the Tibetan Plateau, are heavily covered with supraglacial debris, and flow velocities are highest along short segments near their headwalls but greatly reduced along their debris-mantled lower parts. The downstream distribution of flow velocities suggests that the glacial erosion potential is progressively shifted upstream as accumulation areas get steeper and hillslope debris fluxes increase. Our data suggest that the coupling of hillslopes and glacial dynamics increases with topographic steepness and debris cover. The melt-lowering effect of thick debris cover allows the existence of glaciers even when they are located entirely below the snow line. However, slow velocities limit the erosion potential of such glaciers, and their main landscape-shaping contribution may simply be the evacuation of debris from the base of glacial headwalls, which inhibits the formation of scree slopes and thereby allows ongoing headwall retreat by periglacial hillslope processes. We propose a conceptual model in which glacially influenced plateau margins evolve from low-relief to high-relief landscapes with distinctive contributions of hillslope processes and glaciers to relief production and decay.}, language = {en} } @article{ScherlerBookhagenStrecker2011, author = {Scherler, Dirk and Bookhagen, Bodo and Strecker, Manfred}, title = {Spatially variable response of Himalayan glaciers to climate change affected by debris cover}, series = {Nature geoscience}, volume = {4}, journal = {Nature geoscience}, number = {3}, publisher = {Nature Publ. Group}, address = {New York}, issn = {1752-0894}, doi = {10.1038/NGEO1068}, pages = {156 -- 159}, year = {2011}, abstract = {Controversy about the current state and future evolution of Himalayan glaciers has been stirred up by erroneous statements in the fourth report by the Intergovernmental Panel on Climate Change(1,2). Variable retreat rates(3-6) and a paucity of glacial mass-balance data(7,8) make it difficult to develop a coherent picture of regional climate-change impacts in the region. Here, we report remotely-sensed frontal changes and surface velocities from glaciers in the greater Himalaya between 2000 and 2008 that provide evidence for strong spatial variations in glacier behaviour which are linked to topography and climate. More than 65\% of the monsoon-influenced glaciers that we observed are retreating, but heavily debris-covered glaciers with stagnant low-gradient terminus regions typically have stable fronts. Debris-covered glaciers are common in the rugged central Himalaya, but they are almost absent in subdued landscapes on the Tibetan Plateau, where retreat rates are higher. In contrast, more than 50\% of observed glaciers in the westerlies-influenced Karakoram region in the northwestern Himalaya are advancing or stable. Our study shows that there is no uniform response of Himalayan glaciers to climate change and highlights the importance of debris cover for understanding glacier retreat, an effect that has so far been neglected in predictions of future water availability(9,10) or global sea level(11).}, language = {en} }