@article{WergerBergmannWeberetal.2020, author = {Werger, Luise and Bergmann, Joana and Weber, Ewald and Heinze, Johannes}, title = {Wind intensity affects fine root morphological traits with consequences for plant-soil feedback effects}, series = {Annals of Botany Plants}, volume = {12}, journal = {Annals of Botany Plants}, number = {5}, publisher = {Oxford University Press}, address = {Oxford}, issn = {2041-2851}, doi = {10.1093/aobpla/plaa050}, pages = {12}, year = {2020}, abstract = {Wind influences the development, architecture and morphology of plant roots and may modify subsequent interactions between plants and soil (plant-soil feedbacks—PSFs). However, information on wind effects on fine root morphology is scarce and the extent to which wind changes plant-soil interactions remains unclear. Therefore, we investigated the effects of two wind intensity levels by manipulating surrounding vegetation height in a grassland PSF field experiment. We grew four common plant species (two grasses and two non-leguminous forbs) with soil biota either previously conditioned by these or other species and tested the effect of wind on root:shoot ratio, fine root morphological traits as well as the outcome for PSFs. Wind intensity did not affect biomass allocation (i.e. root:shoot ratio) in any species. However, fine-root morphology of all species changed under high wind intensity. High wind intensity increased specific root length and surface area and decreased root tissue density, especially in the two grasses. Similarly, the direction of PSFs changed under high wind intensity in all four species, but differences in biomass production on the different soils between high and low wind intensity were marginal and most pronounced when comparing grasses with forbs. Because soils did not differ in plant-available nor total nutrient content, the results suggest that wind-induced changes in root morphology have the potential to influence plant-soil interactions. Linking wind-induced changes in fine-root morphology to effects on PSF improves our understanding of plant-soil interactions under changing environmental conditions.}, language = {en} } @article{Weber2011, author = {Weber, Ewald}, title = {Strong regeneration ability from rhizome fragments in two invasive clonal plants (Solidago canadensis and S. gigantea)}, series = {Biological invasions : unique international journal uniting scientists in the broad field of biological invasions}, volume = {13}, journal = {Biological invasions : unique international journal uniting scientists in the broad field of biological invasions}, number = {12}, publisher = {Springer}, address = {Dordrecht}, issn = {1387-3547}, doi = {10.1007/s10530-011-9977-y}, pages = {2947 -- 2955}, year = {2011}, abstract = {The two rhizomatous perennials Solidago canadensis and S. gigantea belong to the most widespread alien plants in Europe. Anecdotal observations suggest that they disperse also by rhizome fragments. For testing their resprouting ability, rhizome fragments of different sizes from both species were buried at four different soil depths (0, 5, 10 and 20 cm, respectively) in a common garden. Rhizome fragments of S. canadensis ranged 3-6 cm in length, those of S. gigantea 5-20 cm in length. Resprouting plants were harvested after 3 months and growth related traits measured to assess their vitality. Resprouting rate in S. gigantea was far higher than in S. canadensis (85 and 19\%, respectively). In S. gigantea, fragments of all sizes resprouted from all soil depths whereas none rhizome of S. canadensis emerged from 20 cm burial depth. In S. gigantea, size related traits showed significant interactions between fragment size and burial depth, but not relative shoot growth rate. At all burial depths, vitality of plants emerging from small rhizomes was lower than plants emerging from large rhizomes. Effects of rhizome size became stronger with increasing burial depth. The results show that both species are able to resprout from buried rhizome fragments, and that succesful regeneration is more likely to occur in S. gigantea. Managing these species should avoid any activities promoting rhizome fragmentation and dispersal of fragments.}, language = {en} } @article{VanKleunenWeberFischer2010, author = {Van Kleunen, Mark and Weber, Ewald and Fischer, Markus}, title = {A meta-analysis of trait differences between invasive and non-invasive plant species}, issn = {1461-023X}, year = {2010}, abstract = {A major aim in ecology is identifying determinants of invasiveness. We performed a meta-analysis of 117 field or experimental-garden studies that measured pair-wise trait differences of a total of 125 invasive and 196 non-invasive plant species in the invasive range of the invasive species. We tested whether invasiveness is associated with performance-related traits (physiology, leaf-area allocation, shoot allocation, growth rate, size and fitness), and whether such associations depend on type of study and on biogeographical or biological factors. Overall, invasive species had significantly higher values than non-invasive species for all six trait categories. More trait differences were significant for invasive vs. native comparisons than for invasive vs. non-invasive alien comparisons. Moreover, for comparisons between invasive species and native species that themselves are invasive elsewhere, no trait differences were significant. Differences in physiology and growth rate were larger in tropical regions than in temperate regions. Trait differences did not depend on whether the invasive alien species originates from Europe, nor did they depend on the test environment. We conclude that invasive alien species had higher values for those traits related to performance than non-invasive species. This suggests that it might become possible to predict future plant invasions from species traits.}, language = {en} } @article{vanKleunenEsslPergletal.2018, author = {van Kleunen, Mark and Essl, Franz and Pergl, Jan and Brundu, Giuseppe and Carboni, Marta and Dullinger, Stefan and Early, Regan and Gonzalez-Moreno, Pablo and Groom, Quentin J. M. and Hulme, Philip E. and Kueffer, Christoph and K{\"u}hn, Ingolf and Maguas, Cristina and Maurel, Noelie and Novoa, Ana and Parepa, Madalin and Pysek, Petr and Seebens, Hanno and Tanner, Rob and Touza, Julia and Verbrugge, Laura and Weber, Ewald and Dawson, Wayne and Kreft, Holger and Weigelt, Patrick and Winter, Marten and Klonner, Guenther and Talluto, Matthew V. and Dehnen-Schmutz, Katharina}, title = {The changing role of ornamental horticulture in alien plant invasions}, series = {Biological reviews}, volume = {93}, journal = {Biological reviews}, number = {3}, publisher = {Wiley}, address = {Hoboken}, issn = {1464-7931}, doi = {10.1111/brv.12402}, pages = {1421 -- 1437}, year = {2018}, abstract = {The number of alien plants escaping from cultivation into native ecosystems is increasing steadily. We provide an overview of the historical, contemporary and potential future roles of ornamental horticulture in plant invasions. We show that currently at least 75\% and 93\% of the global naturalised alien flora is grown in domestic and botanical gardens, respectively. Species grown in gardens also have a larger naturalised range than those that are not. After the Middle Ages, particularly in the 18th and 19th centuries, a global trade network in plants emerged. Since then, cultivated alien species also started to appear in the wild more frequently than non-cultivated aliens globally, particularly during the 19th century. Horticulture still plays a prominent role in current plant introduction, and the monetary value of live-plant imports in different parts of the world is steadily increasing. Historically, botanical gardens - an important component of horticulture - played a major role in displaying, cultivating and distributing new plant discoveries. While the role of botanical gardens in the horticultural supply chain has declined, they are still a significant link, with one-third of institutions involved in retail-plant sales and horticultural research. However, botanical gardens have also become more dependent on commercial nurseries as plant sources, particularly in North America. Plants selected for ornamental purposes are not a random selection of the global flora, and some of the plant characteristics promoted through horticulture, such as fast growth, also promote invasion. Efforts to breed non-invasive plant cultivars are still rare. Socio-economical, technological, and environmental changes will lead to novel patterns of plant introductions and invasion opportunities for the species that are already cultivated. We describe the role that horticulture could play in mediating these changes. We identify current research challenges, and call for more research efforts on the past and current role of horticulture in plant invasions. This is required to develop science-based regulatory frameworks to prevent further plant invasions.}, language = {en} } @article{vanKleunenDawsonEssletal.2015, author = {van Kleunen, Mark and Dawson, Wayne and Essl, Franz and Pergl, Jan and Winter, Marten and Weber, Ewald and Kreft, Holger and Weigelt, Patrick and Kartesz, John and Nishino, Misako and Antonova, Liubov A. and Barcelona, Julie F. and Cabezas, Francisco J. and Cardenas, Dairon and Cardenas-Toro, Juliana and Castano, Nicolas and Chacon, Eduardo and Chatelain, Cyrille and Ebel, Aleksandr L. and Figueiredo, Estrela and Fuentes, Nicol and Groom, Quentin J. and Henderson, Lesley and Inderjit, and Kupriyanov, Andrey and Masciadri, Silvana and Meerman, Jan and Morozova, Olga and Moser, Dietmar and Nickrent, Daniel L. and Patzelt, Annette and Pelser, Pieter B. and Baptiste, Maria P. and Poopath, Manop and Schulze, Maria and Seebens, Hanno and Shu, Wen-sheng and Thomas, Jacob and Velayos, Mauricio and Wieringa, Jan J. and Pysek, Petr}, title = {Global exchange and accumulation of non-native plants}, series = {Nature : the international weekly journal of science}, volume = {525}, journal = {Nature : the international weekly journal of science}, number = {7567}, publisher = {Nature Publ. Group}, address = {London}, issn = {0028-0836}, doi = {10.1038/nature14910}, pages = {100 -- +}, year = {2015}, abstract = {All around the globe, humans have greatly altered the abiotic and biotic environment with ever-increasing speed. One defining feature of the Anthropocene epoch(1,2) is the erosion of biogeographical barriers by human-mediated dispersal of species into new regions, where they can naturalize and cause ecological, economic and social damage(3). So far, no comprehensive analysis of the global accumulation and exchange of alien plant species between continents has been performed, primarily because of a lack of data. Here we bridge this knowledge gap by using a unique global database on the occurrences of naturalized alien plant species in 481 mainland and 362 island regions. In total, 13,168 plant species, corresponding to 3.9\% of the extant global vascular flora, or approximately the size of the native European flora, have become naturalized somewhere on the globe as a result of human activity. North America has accumulated the largest number of naturalized species, whereas the Pacific Islands show the fastest increase in species numbers with respect to their land area. Continents in the Northern Hemisphere have been the major donors of naturalized alien species to all other continents. Our results quantify for the first time the extent of plant naturalizations worldwide, and illustrate the urgent need for globally integrated efforts to control, manage and understand the spread of alien species.}, language = {en} } @article{SeebensEsslDawsonetal.2015, author = {Seebens, Hanno and Essl, Franz and Dawson, Wayne and Fuentes, Nicol and Moser, Dietmar and Pergl, Jan and Pysek, Petr and van Kleunen, Mark and Weber, Ewald and Winter, Marten and Blasius, Bernd}, title = {Global trade will accelerate plant invasions in emerging economies under climate change}, series = {Global change biology}, volume = {21}, journal = {Global change biology}, number = {11}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {1354-1013}, doi = {10.1111/gcb.13021}, pages = {4128 -- 4140}, year = {2015}, abstract = {Trade plays a key role in the spread of alien species and has arguably contributed to the recent enormous acceleration of biological invasions, thus homogenizing biotas worldwide. Combining data on 60-year trends of bilateral trade, as well as on biodiversity and climate, we modeled the global spread of plant species among 147 countries. The model results were compared with a recently compiled unique global data set on numbers of naturalized alien vascular plant species representing the most comprehensive collection of naturalized plant distributions currently available. The model identifies major source regions, introduction routes, and hot spots of plant invasions that agree well with observed naturalized plant numbers. In contrast to common knowledge, we show that the 'imperialist dogma,' stating that Europe has been a net exporter of naturalized plants since colonial times, does not hold for the past 60 years, when more naturalized plants were being imported to than exported from Europe. Our results highlight that the current distribution of naturalized plants is best predicted by socioeconomic activities 20 years ago. We took advantage of the observed time lag and used trade developments until recent times to predict naturalized plant trajectories for the next two decades. This shows that particularly strong increases in naturalized plant numbers are expected in the next 20 years for emerging economies in megadiverse regions. The interaction with predicted future climate change will increase invasions in northern temperate countries and reduce them in tropical and (sub) tropical regions, yet not by enough to cancel out the trade-related increase.}, language = {en} } @article{PyšekPerglEssletal.2017, author = {Pyšek, Petr and Pergl, Jan and Essl, Franz and Lenzner, Bernd and Dawson, Wayne and Kreft, Holger and Weigelt, Patrick and Winter, Marten and Kartesz, John and Nishino, Misako and Antonova, Liubov A. and Barcelona, Julie F. and Cabezas, Francisco Jos{\´e} and C{\´a}rdenas L{\´o}pez, Dairon and C{\´a}rdenas-Toro, Juliana and Castańo, Nicol{\´a}s and Chac{\´o}n, Eduardo and Chatelain, Cyrille and Dullinger, Stefan and Ebel, Aleksandr L. and Figueiredo, Estrela and Fuentes, Nicol and Genovesi, Piero and Groom, Quentin J. and Henderson, Lesley and Inderjit, and Kupriyanov, Andrey and Masciadri, Silvana and Maurel, No{\"e}lie and Meerman, Jan and Morozova, Olʹga V. and Moser, Dietmar and Nickrent, Daniel and Nowak, Pauline M. and Pagad, Shyama and Patzelt, Annette and Pelser, Pieter B. and Seebens, Hanno and Shu, Wen-sheng and Thomas, Jacob and Velayos, Mauricio and Weber, Ewald and Wieringa, Jan J. and Baptiste, Maria P. and Kleunen, Mark van}, title = {Naturalized alien flora of the world}, series = {Preslia : the journal of the Czech Botanical Society}, volume = {89}, journal = {Preslia : the journal of the Czech Botanical Society}, number = {3}, publisher = {Czech Botanical Soc.}, address = {Praha}, issn = {0032-7786}, doi = {10.23855/preslia.2017.203}, pages = {203 -- 274}, year = {2017}, abstract = {Using the recently built Global Naturalized Alien Flora (GloNAF) database, containing data on the distribution of naturalized alien plants in 483 mainland and 361 island regions of the world, we describe patterns in diversity and geographic distribution of naturalized and invasive plant species, taxonomic, phylogenetic and life-history structure of the global naturalized flora as well as levels of naturalization and their determinants. The mainland regions with the highest numbers of naturalized aliens are some Australian states (with New South Wales being the richest on this continent) and several North American regions (of which California with 1753 naturalized plant species represents the world’s richest region in terms of naturalized alien vascular plants). England, Japan, New Zealand and the Hawaiian archipelago harbour most naturalized plants among islands or island groups. These regions also form the main hotspots of the regional levels of naturalization, measured as the percentage of naturalized aliens in the total flora of the region. Such hotspots of relative naturalized species richness appear on both the western and eastern coasts of North America, in north-western Europe, South Africa, south-eastern Australia, New Zealand, and India. High levels of island invasions by naturalized plants are concentrated in the Pacific, but also occur on individual islands across all oceans. The numbers of naturalized species are closely correlated with those of native species, with a stronger correlation and steeper increase for islands than mainland regions, indicating a greater vulnerability of islands to invasion by species that become successfully naturalized. South Africa, India, California, Cuba, Florida, Queensland and Japan have the highest numbers of invasive species. Regions in temperate and tropical zonobiomes harbour in total 9036 and 6774 naturalized species, respectively, followed by 3280 species naturalized in the Mediterranean zonobiome, 3057 in the subtropical zonobiome and 321 in the Arctic. The New World is richer in naturalized alien plants, with 9905 species compared to 7923 recorded in the Old World. While isolation is the key factor driving the level of naturalization on islands, zonobiomes differing in climatic regimes, and socioeconomy represented by per capita GDP, are central for mainland regions. The 11 most widely distributed species each occur in regions covering about one third of the globe or more in terms of the number of regions where they are naturalized and at least 35\% of the Earth’s land surface in terms of those regions’ areas, with the most widely distributed species Sonchus oleraceus occuring in 48\% of the regions that cover 42\% of the world area. Other widely distributed species are Ricinus communis, Oxalis corniculata, Portulaca oleracea, Eleusine indica, Chenopodium album, Capsella bursa-pastoris, Stellaria media, Bidens pilosa, Datura stramonium and Echinochloa crus-galli. Using the occurrence as invasive rather than only naturalized yields a different ranking, with Lantana camara (120 regions out of 349 for which data on invasive status are known), Calotropis procera (118), Eichhornia crassipes (113), Sonchus oleraceus (108) and Leucaena leucocephala (103) on top. As to the life-history spectra, islands harbour more naturalized woody species (34.4\%) thanmainland regions (29.5\%), and fewer annual herbs (18.7\% compared to 22.3\%). Ranking families by their absolute numbers of naturalized species reveals that Compositae (1343 species), Poaceae (1267) and Leguminosae (1189) contribute most to the global naturalized alien flora. Some families are disproportionally represented by naturalized aliens on islands (Arecaceae, Araceae, Acanthaceae, Amaryllidaceae, Asparagaceae, Convolvulaceae, Rubiaceae, Malvaceae), and much fewer so on mainland (e.g. Brassicaceae, Caryophyllaceae, Boraginaceae). Relating the numbers of naturalized species in a family to its total global richness shows that some of the large species-rich families are over-represented among naturalized aliens (e.g. Poaceae, Leguminosae, Rosaceae, Amaranthaceae, Pinaceae), some under-represented (e.g. Euphorbiaceae, Rubiaceae), whereas the one richest in naturalized species, Compositae, reaches a value expected from its global species richness. Significant phylogenetic signal indicates that families with an increased potential of their species to naturalize are not distributed randomly on the evolutionary tree. Solanum (112 species), Euphorbia (108) and Carex (106) are the genera richest in terms of naturalized species; over-represented on islands are Cotoneaster, Juncus, Eucalyptus, Salix, Hypericum, Geranium and Persicaria, while those relatively richer in naturalized species on the mainland are Atriplex, Opuntia, Oenothera, Artemisia, Vicia, Galium and Rosa. The data presented in this paper also point to where information is lacking and set priorities for future data collection. The GloNAF database has potential for designing concerted action to fill such data gaps, and provide a basis for allocating resources most efficiently towards better understanding and management of plant invasions worldwide.}, language = {en} } @article{KhurooWeberMaliketal.2011, author = {Khuroo, Anzar A. and Weber, Ewald and Malik, A. H. and Reshi, Zafar A. and Dar, G. H.}, title = {Altitudinal distribution patterns of the native and alien woody flora in Kashmir Himalaya, India}, series = {Environmental research}, volume = {111}, journal = {Environmental research}, number = {7}, publisher = {Elsevier}, address = {San Diego}, issn = {0013-9351}, doi = {10.1016/j.envres.2011.05.006}, pages = {967 -- 977}, year = {2011}, abstract = {Background: Many studies have shown that alien species richness pattern follows that of native species richness patterns along environmental gradients, without taking the specific composition of the two groups into account. Objectives: To compare species richness patterns of native and alien woody plants along an altitudinal gradient in Kashmir Himalaya, India, and to analyse the specific composition, e.g. proportion of life forms. Methods: Analysis of secondary data from published floristic inventories. The gradient (500-4800 m asl) was split into 100 m bands and presence/absence data for each species were obtained, for each band. Results: Species richness of both native and alien species followed a hump-shaped distribution. Alien species richness dropped faster above 2000 m asl than the native did. The ratio of trees to shrubs decreased monotonically along the gradient in native species, but showed a peak at c. 2500 m asl in alien species. Alien species flowered in average earlier than native species. Conclusions: The change of species richness of native and alien species along altitude is similar, but the proportion of life forms is not. Most likely both climatic and socio-economic factors affect alien species richness and its specific composition in the Kashmir Himalaya.}, language = {en} } @article{KhurooReshiMaliketal.2012, author = {Khuroo, Anzar A. and Reshi, Zafar A. and Malik, Akhtar H. and Weber, Ewald and Rashid, Irfan and Dar, G. H.}, title = {Alien flora of India taxonomic composition, invasion status and biogeographic affiliations}, series = {Biological invasions : unique international journal uniting scientists in the broad field of biological invasions}, volume = {14}, journal = {Biological invasions : unique international journal uniting scientists in the broad field of biological invasions}, number = {1}, publisher = {Springer}, address = {Dordrecht}, issn = {1387-3547}, doi = {10.1007/s10530-011-9981-2}, pages = {99 -- 113}, year = {2012}, abstract = {The wide knowledge gaps in invasion biology research that exist in the developing world are crucial impediments to the scientific management and global policymaking on biological invasions. In an effort to fill such knowledge gaps, we present here an inventory of the alien flora of India, based on systematic reviews and rigorous analyses of research studies (ca. 190) published over the last 120 years (1890-2010 AD), and updated with field records of the last two decades. Currently, the inventory comprises of 1,599 species, belonging to 842 genera in 161 families, and constitutes 8.5\% of the total Indian vascular flora. The three most species-rich families are Asteraceae (134 spp.), Papilionaceae (114 spp.) and Poaceae (106 spp.), and the three largest genera are Eucalyptus (25 spp.), Ipomoea (22 spp.), and Senna (21 spp.). The majority of these species (812) have no report of escaping from cultivation. Of the remaining subset of 787 species, which have either escaped from intentional cultivation, or spread after unintentional introduction, casuals are represented by 57 spp., casual/naturalised by 114 spp., naturalised by 257 spp., naturalised/invasive by 134 spp., and invasive by 225 spp. Biogeographically, more than one-third (35\%) of the alien flora in India has its native ranges in South America, followed by Asia (21\%), Africa (20\%), Europe (11\%), Australia (8\%), North America (4\%); and cryptogenic (1\%). The inventory is expected to serve as the scientific baseline on plant invasions in India, with implications for conservation of global biodiversity.}, language = {en} } @article{HeinzeWernerWeberetal.2015, author = {Heinze, Johannes and Werner, Tony and Weber, Ewald and Rillig, Matthias C. and Joshi, Jasmin Radha}, title = {Soil biota effects on local abundances of three grass species along a land-use gradient}, series = {Oecologia}, volume = {179}, journal = {Oecologia}, number = {1}, publisher = {Springer}, address = {New York}, issn = {0029-8549}, doi = {10.1007/s00442-015-3336-0}, pages = {249 -- 259}, year = {2015}, abstract = {Biotic plant-soil interactions and land-use intensity are known to affect plant individual fitness as well as competitiveness and therefore plant-species abundances in communities. Therefore, a link between soil biota and land-use intensity on local abundance of plant species in grasslands can be expected. In two greenhouse experiments, we investigated the effects of soil biota from grassland sites differing in land-use intensity on three grass species that vary in local abundances along this land-use gradient. We were interested in those soil-biota effects that are associated with land-use intensity, and whether these effects act directly or indirectly. Therefore, we grew the three plant species in two separate experiments as single individuals and in mixtures and compared their performance. As single plants, all three grasses showed a similar performance with and without soil biota. In contrast, in mixtures growth of the species in response to the presence or absence of soil biota differed. This resulted in different soil-biota effects that tend to correspond with patterns of species-specific abundances in the field for two of the three species tested. Our results highlight the importance of indirect interactions between plants and soil microorganisms and suggest that combined effects of soil biota and plant-plant interactions are involved in structuring plant communities. In conclusion, our experiments suggest that soil biota may have the potential to alter effects of plant-plant interactions and therefore influence plant-species abundances and diversity in grasslands.}, language = {en} } @article{HeinzeGenschWeberetal.2016, author = {Heinze, Johannes and Gensch, Sabine and Weber, Ewald and Joshi, Jasmin Radha}, title = {Soil temperature modifies effects of soil biota on plant growth}, series = {Journal of plant ecology}, volume = {10}, journal = {Journal of plant ecology}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {1752-9921}, doi = {10.1093/jpe/rtw097}, pages = {808 -- 821}, year = {2016}, abstract = {Aims Plants directly and indirectly interact with many abiotic and biotic soil components. Research so far mostly focused on direct, individual abiotic or biotic effects on plant growth, but only few studies tested the indirect effects of abiotic soil factors on plant growth. Therefore, we investigated how abiotic soil conditions affect plant performance, via changes induced by soil biota. Methods In a full-factorial experiment, we grew the widespread grass Dactylis glomerata either with or without soil biota and investigated the impact of soil temperature, fertility and moisture on the soil biota effects on plant growth. We measured biomass production, root traits and colonization by arbuscular mycorrhizal fungi as well as microbial respiration. Important Findings We found significant interaction effects between abiotic soil conditions and soil biota on plant growth for fertility, but especially for soil temperature, as an increase of 10 degrees C significantly changed the soil biota effects on plant growth from positive to neutral. However, if tested individually, an increase in soil temperature and fertility per se positively affected plant biomass production, whereas soil biota per se did not affect overall plant growth, but both influenced root architecture. By affecting soil microbial activity and root architecture, soil temperature might influence both mutualistic and pathogenic interactions between plants and soil biota. Such soil temperature effects should be considered in soil feedback studies to ensure greater transferability of results from artificial and experimental conditions to natural environmental conditions.}, language = {en} } @article{HeinkenWeber2013, author = {Heinken, Thilo and Weber, Ewald}, title = {Consequences of habitat fragmentation for plant species do we know enough?}, series = {Perspectives in plant ecology, evolution and systematics}, volume = {15}, journal = {Perspectives in plant ecology, evolution and systematics}, number = {4}, publisher = {Elsevier}, address = {Jena}, issn = {1433-8319}, doi = {10.1016/j.ppees.2013.05.003}, pages = {205 -- 216}, year = {2013}, abstract = {Habitat fragmentation is one of the most important causes for the decline of plant species. However, plants differing in phylogeny, habitat requirements and biology are likely to respond differently to habitat fragmentation. We ask whether case studies on the effects of habitat fragmentation conducted so far allow generalizations about its effects on the fitness and genetic diversity of populations of endangered plant species. We compared the characteristics of plant species endangered in Germany whose sensitivity to habitat fragmentation had been studied with those of the endangered species that had not been studied. We found strong discrepancies between the two groups with regard to their taxonomy and traits relevant to their sensitivity to habitat fragmentation. Monocots, graminoids, clonal, abiotically pollinated and self compatible species were underrepresented among the studied species, and most study species were from a few habitat types, in particular grasslands. We conclude that our current knowledge of the effects of habitat fragmentation on plant populations is not sufficient to provide widely applicable guidelines for species management. The selection of species studied so far has been biased toward species from certain habitats and species exhibiting traits that probably make them vulnerable to habitat fragmentation. Future studies should include community-wide approaches in different habitats, e.g. re-visitation studies in which the species pool is assessed at different time intervals, and population-biological studies of species from a wide range of habitats, and of different life forms and growth strategies. A more representative picture of the effects of habitat fragmentation would allow a better assessment of threats and more specific recommendations for optimally managing populations of endangered plants.}, language = {en} } @article{EsslDawsonKreftetal.2019, author = {Essl, Franz and Dawson, Wayne and Kreft, Holger and Pergl, Jan and Pysek, Petr and van Kleunen, Mark and Weigelt, Patrick and Mang, Thomas and Dullinger, Stefan and Lenzner, Bernd and Moser, Dietmar and Maurel, Noelie and Seebens, Hanno and Stein, Anke and Weber, Ewald and Chatelain, Cyrille and Inderjit, and Genovesi, Piero and Kartesz, John and Morozova, Olga and Nishino, Misako and Nowak, Pauline M. and Pagad, Shyama and Shu, Wen-sheng and Winter, Marten}, title = {Drivers of the relative richness of naturalized and invasive plant species on Earth}, series = {AoB PLANTS}, volume = {11}, journal = {AoB PLANTS}, number = {5}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {2041-2851}, doi = {10.1093/aobpla/plz051}, pages = {13}, year = {2019}, abstract = {Biological invasions are a defining feature of the Anthropocene, but the factors that determine the spatially uneven distribution of alien plant species are still poorly understood. Here, we present the first global analysis of the effects of biogeographic factors, the physical environment and socio-economy on the richness of naturalized and invasive alien plants. We used generalized linear mixed-effects models and variation partitioning to disentangle the relative importance of individual factors, and, more broadly, of biogeography, physical environment and socio-economy. As measures of the magnitude of permanent anthropogenic additions to the regional species pool and of species with negative environmental impacts, we calculated the relative richness of naturalized (= RRN) and invasive (= RRI) alien plant species numbers adjusted for the number of native species in 838 terrestrial regions. Socio-economic factors (per-capita gross domestic product (GDP), population density, proportion of agricultural land) were more important in explaining RRI (similar to 50 \% of the explained variation) than RRN (similar to 40 \%). Warm-temperate and (sub)tropical regions have higher RRN than tropical or cooler regions. We found that socio-economic pressures are more relevant for invasive than for naturalized species richness. The expectation that the southern hemisphere is more invaded than the northern hemisphere was confirmed only for RRN on islands, but not for mainland regions nor for RRI. On average, islands have similar to 6-fold RRN, and >3-fold RRI compared to mainland regions. Eighty-two islands (=26 \% of all islands) harbour more naturalized alien than native plants. Our findings challenge the widely held expectation that socio-economic pressures are more relevant for plant naturalization than for invasive plants. To meet international biodiversity targets and halt the detrimental consequences of plant invasions, it is essential to disrupt the connection between socio-economic development and plant invasions by improving pathway management, early detection and rapid response.}, language = {en} } @article{DellingerEsslHojsgaardetal.2016, author = {Dellinger, Agnes S. and Essl, Franz and Hojsgaard, Diego and Kirchheimer, Bernhard and Klatt, Simone and Dawson, Wayne and Pergl, Jan and Pysek, Petr and van Kleunen, Mark and Weber, Ewald and Winter, Marten and Hoerandl, Elvira and Dullinger, Stefan}, title = {Niche dynamics of alien species do not differ among sexual and apomictic flowering plants}, series = {New phytologist : international journal of plant science}, volume = {209}, journal = {New phytologist : international journal of plant science}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {0028-646X}, doi = {10.1111/nph.13694}, pages = {1313 -- 1323}, year = {2016}, abstract = {We compiled global occurrence data sets of 13 congeneric sexual and apomictic species pairs, and used principal components analysis (PCA) and kernel smoothers to compare changes in climatic niche optima, breadths and unfilling/expansion between native and alien ranges. Niche change metrics were compared between sexual and apomictic species. All 26 species showed changes in niche optima and/or breadth and 14 species significantly expanded their climatic niches. However, we found no effect of the reproductive system on niche dynamics. Instead, species with narrower native niches showed higher rates of niche expansion in the alien ranges. Our results suggest that niche shifts are frequent in plant invasions but evolutionary potential may not be of major importance for such shifts. Niche dynamics rather appear to be driven by changes of the realized niche without adaptive change of the fundamental climatic niche.}, language = {en} } @article{CochardEdwardsWeber2015, author = {Cochard, Roland and Edwards, Peter J. and Weber, Ewald}, title = {Post-ranching tree-grass interactions in secondary Acacia zanzibarica woodlands in coastal Tanzania - an experimental study}, series = {Applied vegetation science : official organ of the International Association for Vegetation Science}, volume = {18}, journal = {Applied vegetation science : official organ of the International Association for Vegetation Science}, number = {2}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {1402-2001}, doi = {10.1111/avsc.12134}, pages = {297 -- 310}, year = {2015}, abstract = {Questions: We studied a humid savanna rangeland., abandoned in 2000, where intensive cattle grazing had led to widespread encroachment by Acacia zanzibarica. We asked whether the acacia trees were able to regenerate in the absence of domesJic livestock, either beneath acacia canopies or in artificial clearings. Location: Tropical coastal Tanzania (former Mkwaja Ranch, now in Saadani National Park). Methods: We set out a total of 48 plots on four sites in November 2001, and assigned them to three treatments: trees felled (FN), trees felled and the stumps poisoned (FP) with Triclopyr, and no intervention (controls, NN). We analysed soils of plots for texture and nutrients. In two wet (July 2002 and 2003) and one dry (February 2003) seasons we assessed grass and tree leaf biomass and transpiration rates, and counted acacia seedlings and resprouts. The effects of treatments (controlled for site and other co-variables) on grass growth and acacia rectaiitment were determined statistically using general linear models (GLM). Results: Acacia leaves had a much higher stomatal conductance than grasses, with the consequence that total evapotranspiration in woodland was higher than in clearings. In the wet seasons, grass biomass and seedling densities were significantly higher in clearings than in control plots, which we attributed to more.favourable moisture conditions, In the dry season, by contrast, we found no differences, and all seedlings had died. On FN plots, 71\% of stumps, and on FP plots, 11\% resprouted (coppicing), but only a quarter of these shoots survived until July 2003. Root suckering occurred spontaneously at low densities. No root suckers or resprouts grew beyond the grass layer. Conclusions: Acacia woodlands do not regenerate in the absence of cattle grazing, and tree cutting in combination with appropriate fire management could potentially accelerate re-establishment of open grassland. However, regeneration might occur in the future due to the increasing wildlife populations within the new national park.}, language = {en} }