@article{BreitensteinNielsenHoelzeletal.2011, author = {Breitenstein, Michael and Nielsen, Peter E. and H{\"o}lzel, Ralph and Bier, Frank Fabian}, title = {DNA-nanostructure-assembly by sequential spotting}, series = {Journal of nanobiotechnology}, volume = {9}, journal = {Journal of nanobiotechnology}, number = {11}, publisher = {BioMed Central}, address = {London}, issn = {1477-3155}, doi = {10.1186/1477-3155-9-54}, pages = {10}, year = {2011}, abstract = {Background: The ability to create nanostructures with biomolecules is one of the key elements in nanobiotechnology. One of the problems is the expensive and mostly custom made equipment which is needed for their development. We intended to reduce material costs and aimed at miniaturization of the necessary tools that are essential for nanofabrication. Thus we combined the capabilities of molecular ink lithography with DNA-self-assembling capabilities to arrange DNA in an independent array which allows addressing molecules in nanoscale dimensions. Results: For the construction of DNA based nanostructures a method is presented that allows an arrangement of DNA strands in such a way that they can form a grid that only depends on the spotted pattern of the anchor molecules. An atomic force microscope (AFM) has been used for molecular ink lithography to generate small spots. The sequential spotting process allows the immobilization of several different functional biomolecules with a single AFM-tip. This grid which delivers specific addresses for the prepared DNA-strand serves as a two-dimensional anchor to arrange the sequence according to the pattern. Once the DNA-nanoarray has been formed, it can be functionalized by PNA (peptide nucleic acid) to incorporate advanced structures. Conclusions: The production of DNA-nanoarrays is a promising task for nanobiotechnology. The described method allows convenient and low cost preparation of nanoarrays. PNA can be used for complex functionalization purposes as well as a structural element.}, language = {en} } @misc{BreitensteinNielsenHoelzeletal.2011, author = {Breitenstein, Michael and Nielsen, Peter E. and H{\"o}lzel, Ralph and Bier, Frank Fabian}, title = {DNA-nanostructure-assembly by sequential spotting}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1027}, issn = {1866-8372}, doi = {10.25932/publishup-43110}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-431108}, pages = {12}, year = {2011}, abstract = {Background: The ability to create nanostructures with biomolecules is one of the key elements in nanobiotechnology. One of the problems is the expensive and mostly custom made equipment which is needed for their development. We intended to reduce material costs and aimed at miniaturization of the necessary tools that are essential for nanofabrication. Thus we combined the capabilities of molecular ink lithography with DNA-self-assembling capabilities to arrange DNA in an independent array which allows addressing molecules in nanoscale dimensions. Results: For the construction of DNA based nanostructures a method is presented that allows an arrangement of DNA strands in such a way that they can form a grid that only depends on the spotted pattern of the anchor molecules. An atomic force microscope (AFM) has been used for molecular ink lithography to generate small spots. The sequential spotting process allows the immobilization of several different functional biomolecules with a single AFM-tip. This grid which delivers specific addresses for the prepared DNA-strand serves as a two-dimensional anchor to arrange the sequence according to the pattern. Once the DNA-nanoarray has been formed, it can be functionalized by PNA (peptide nucleic acid) to incorporate advanced structures. Conclusions: The production of DNA-nanoarrays is a promising task for nanobiotechnology. The described method allows convenient and low cost preparation of nanoarrays. PNA can be used for complex functionalization purposes as well as a structural element.}, language = {en} }